19
views
0
recommends
+1 Recommend
1 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An unusual case of shortness of breath

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Myopathy is a well-known complication of hypercortisolism and commonly involves proximal lower-limb girdle. We report a rare case of Cushing’s syndrome in a 60-year-old female presenting with significant respiratory muscle weakness and respiratory failure. She had history of rheumatoid arthritis, primary biliary cirrhosis and primary hypothyroidism and presented with weight gain and increasing shortness of breath. Investigations confirmed a restrictive defect with impaired gas transfer but with no significant parenchymatous pulmonary disease. Respiratory muscle test confirmed weakness of respiratory muscles and diaphragm. Biochemical and radiological investigations confirmed hypercortisolaemia secondary to a left adrenal tumour. Following adrenalectomy her respiratory symptoms improved along with an objective improvement in the respiratory muscle strength, diaphragmatic movement and pulmonary function test.

          Learning points:
          • Cushing’s syndrome can present in many ways, a high index of suspicion is required for its diagnosis, as often patients present with only few of the pathognomonic symptoms and signs of the syndrome.

          • Proximal lower-limb girdle myopathy is common in Cushing’s syndrome. Less often long-term exposure of excess glucocorticoid production can also affect other muscles including respiratory muscle and the diaphragm leading to progressive shortness of breath and even acute respiratory failure.

          • Treatment of Cushing’s myopathy involves treating the underlying cause that is hypercortisolism. Various medications have been suggested to hinder the development of GC-induced myopathy, but their effects are poorly analysed.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: not found
          • Article: not found

          Balancing muscle hypertrophy and atrophy.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inactivity amplifies the catabolic response of skeletal muscle to cortisol.

            Severe injury or trauma is accompanied by both hypercortisolemia and prolonged inactivity or bed rest (BR). Trauma and BR alone each result in a loss of muscle nitrogen, albeit through different metabolic alterations. Although BR alone can result in a 2-3% loss of lean body mass, the effects of severe trauma can be 2- to 3-fold greater. We investigated the combined effects of hypercortisolemia and prolonged inactivity on muscle protein metabolism in healthy volunteers. Six males were studied before and after 14 days of strict BR using a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis and breakdown rates of skeletal muscle protein were also directly calculated. Each assessment of protein metabolism was conducted during a 12-h infusion of hydrocortisone sodium succinate (120 microg/kg x h), resulting in blood cortisol concentrations that mimic severe injury (approximately 31 microg/dL). After 14 days of strict BR, hypercortisolemia increased phenylalanine efflux from muscle by 3-fold (P < 0.05). The augmented negative amino acid balance was the result of an increased muscle protein breakdown (P < 0.05) without a concomitant change in muscle protein synthesis. Muscle efflux of glutamine and alanine increased significantly after bed rest due to a significant increase in de novo synthesis (P < 0.05). Thus, inactivity sensitizes skeletal muscle to the catabolic effects of hypercortisolemia. Furthermore, these effects on healthy volunteers are analogous to those seen after severe injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glucocorticoids differentially regulate degradation of MyoD and Id1 by N-terminal ubiquitination to promote muscle protein catabolism.

              Accelerated protein degradation via the ubiquitin-proteasome pathway is the principal cause of skeletal muscle wasting associated with common human disease states and pharmacological treatment with glucocorticoids. Although many protein regulatory factors essential for muscle development and regeneration are degraded via the ubiquitin system, little is known about the mechanisms and regulation of this pathway that promote wasting muscle. Here, we demonstrate that, in differentiated myotubes, glucocorticoid, via the glucocorticoid receptor, selectively induces a decrease in protein abundance of MyoD, a master switch for muscle development and regeneration, but not that of its negative regulator Id1. This decrease in MyoD protein results from accelerated degradation after glucocorticoid exposure. Using MyoD and Id1 mutants deficient in either N terminus-dependent or internal lysine-dependent ubiquitination, we further show that these ubiquitination pathways of MyoD degradation are regulated differently from those of Id1 degradation. Specifically, glucocorticoid activates the N-terminal ubiquitination pathway in MyoD degradation in myotubes, without concomitant effects on Id1 degradation. This effect of glucocorticoid on MyoD and Id1 protein degradation is associated with the distinct cellular compartments in which their degradation occurs. Taken together, these results support a key role for the N terminus-dependent ubiquitination pathway in the physiology of muscle protein degradation.
                Bookmark

                Author and article information

                Journal
                Endocrinol Diabetes Metab Case Rep
                Endocrinol Diabetes Metab Case Rep
                EDM
                Endocrinology, Diabetes & Metabolism Case Reports
                Bioscientifica Ltd (Bristol )
                2052-0573
                26 July 2018
                2018
                : 2018
                : 18-0074
                Affiliations
                [1 ]New Cross Hospital , Wolverhampton, UK
                [2 ]Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, 47000 Sungai Buloh, Selangor, Malaysia
                Author notes
                Correspondence should be addressed to S F Wan Muhammad Hatta Email sharifah.faradila@ 123456nhs.net
                Article
                EDM180074
                10.1530/EDM-18-0074
                6063989
                c3054506-9999-4295-9356-0307e2a9ae3a
                © 2018 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

                History
                : 18 June 2018
                : 06 July 2018
                Categories
                Unusual Effects of Medical Treatment

                Comments

                Comment on this article