25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mutações do gene cystic fibrosis transmembrane conductance regulator e deleções dos genes glutationa S-transferase em pacientes com fibrose cística no Brasil Translated title: Cystic fibrosis transmembrane conductance regulator gene mutations and glutathione S-transferase null genotypes in cystic fibrosis patients in Brazil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJETIVO: Determinar os efeitos que a mutação do gene cystic fibrosis transmembrane conductance regulator (CFTR) e da deleção dos genes glutationa S-transferase (GST) mu-1 (GSTM1) e teta-1 (GSTT1) têm na evolução clínica da fibrose cística (FC) em pacientes da região sudeste do Brasil. MÉTODOS: Entre março de 2002 e março de 2005, incluímos no estudo todos os pacientes com FC atendidos consecutivamente no Departamento de Pediatria do Hospital de Clínicas da Faculdade de Ciências Médicas da Universidade Estadual de Campinas. O DNA genômico de 66 pacientes com FC foi analisado por PCR e digestão com endonuclease de restrição para a identificação dos genótipos. RESULTADOS: A mutação ΔF508 do gene CFTR foi identificada em 44 (66,7%) pacientes. As deleções dos genes GSTM1, GSTT1 e da combinação nula GSTM1/GSTT1 foram identificadas em 40,9%, 15,2% e 3,0% dos pacientes, respectivamente. A mutação ΔF508 do gene CFTR foi mais comum em pacientes diagnosticados com FC antes dos 2,5 anos de idade que naqueles diagnosticados mais tarde (75,5% vs. 41,2%; p = 0,008). CONCLUSÕES: Foram observadas frequências similares da mutação ΔF508 do gene CFTR e dos genótipos GSTM1 e GSTT1 nos pacientes, independentemente do sexo, etnia ou status da doença pulmonar ou pancreática. Quando os pacientes foram estratificados por aspectos clínicos e epidemiológicos, as frequências dos genótipos GSTM1 e GSTT1 nulos foram semelhantes, sugerindo que a ausência herdada dessas vias enzimáticas não altera o curso da FC. Em contraste, a alta frequência da mutação ΔF508 no gene CFTR encontrada em pacientes mais jovens sugere que essa mutação influencia a idade no momento do diagnóstico de FC nessa região do país.

          Translated abstract

          OBJECTIVE: To determine the effects that mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene and deletion of the glutathione S-transferase (GST) genes mu-1 (GSTM1) and theta-1 (GSTT1) have on the clinical course of cystic fibrosis (CF) in patients residing in the southeastern region of Brazil. METHODS: The study sample consisted of all consecutive CF patients treated at the Hospital de Clínicas School of Medical Sciences of the State University at Campinas between March of 2002 and March of 2005. We included 66 CF patients. Genomic DNA was analyzed by polymerase chain reaction and restriction endonuclease digestion for the identification of the genotypes. RESULTS: The DF508 mutation of the CFTR gene was found in 44 patients (66.7%). The null genotypes GSTM1, GSTT1 and GSTM1/GSTT1 were found in 40.9%, 15.2%, and 3.0% of the patients, respectively. The DF508 CFTR mutation was more common in patients diagnosed with CF before 2.5 years of age than in those diagnosed later (75.5% vs. 41.2%; p = 0.008). The frequency of the DF508 CFTR mutation, as well as of the GSTM1 and GSTT1 genotypes, was not found to be associated with gender, ethnicity, pulmonary disease status, or pancreatic disease status. CONCLUSIONS: When the patients were stratified by clinical and epidemiological features, the frequencies of the GSTM1 and GSTT1 null genotypes were similar, suggesting that the inherited absence of these enzymatic pathways does not alter the course of CF. However, the high frequency of the DF508 CFTR mutation found in younger children suggests that it influences the age at diagnosis of CF in this region of Brazil.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Genotype and phenotype in cystic fibrosis.

          Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene which encodes a protein expressed in the apical membrane of exocrine epithelial cells. CFTR functions principally as a cAMP-induced chloride channel and appears capable of regulating other ion channels. Besides the most common mutation, DeltaF508, accounting for about 70% of CF chromosomes worldwide, more than 850 mutant alleles have been reported to the CF Genetic Analysis Consortium. These mutations affect CFTR through a variety of molecular mechanisms which can produce little or no functional CFTR at the apical membrane. This genotypic variation provides a rationale for phenotypic effects of the specific mutations. The extent to which various CFTR alleles contribute to clinical variation in CF is evaluated by genotype-phenotype studies. These demonstrated that the degree of correlation between CFTR genotype and CF phenotype varies between its clinical components and is highest for the pancreatic status and lowest for pulmonary disease. The poor correlation between CFTR genotype and severity of lung disease strongly suggests an influence of environmental and secondary genetic factors (CF modifiers). Several candidate genes related to innate and adaptive immune response have been implicated as pulmonary CF modifiers. In addition, the presence of a genetic CF modifier for meconium ileus has been demonstrated on human chromosome 19q13.2. The phenotypic spectrum associated with mutations in the CFTR gene extends beyond the classically defined CF. Besides patients with atypical CF, there are large numbers of so-called monosymptomatic diseases such as various forms of obstructive azoospermia, idiopathic pancreatitis or disseminated bronchiectasis associated with CFTR mutations uncharacteristic for CF. The composition, frequency and type of CFTR mutations/variants parallel the spectrum of CFTR-associated phenotypes, from classic CF to mild monosymptomatic presentations. Expansion of the spectrum of disease associated with the CFTR mutant genes creates a need for revision of the diagnostic criteria for CF and a dilemma for setting nosologic boundaries between CF and other diseases with CFTR etiology. Copyright 2000 S. Karger AG, Basel.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of the CFTR gene in Iranian cystic fibrosis patients: identification of eight novel mutations.

            Cystic fibrosis (CF) is the most common inherited disorder in Caucasian populations, with over 1400 mutations identified in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Mutations in the CFTR gene may be also causative for CBAVD (Congenital Bilateral Absence of the Vas Deferens). The type and distribution of mutations varies widely between different countries and/or ethnic groups, and is relatively unknown in Iran. We therefore performed a comprehensive analysis of the CFTR gene in Iranian CF patients. 69 Iranian CF patients, and 1 CBAVD patient, were analysed for mutations in the complete coding region, and its exon/intron junctions, of their CFTR genes, using different methods, such as ARMS (amplification refractory mutation system)-PCR, SSCP (single stranded conformation polymorphism) analysis, restriction enzyme digestion analysis, direct sequencing, and MLPA (Multiplex Ligation-mediated Probe Amplification). CFTR mutation analysis revealed the identification of 37 mutations in 69 Iranian CF patients. Overall, 81.9% (113/138) CFTR genes derived from Iranian CF patients could be characterized for a disease-causing mutation. The CBAVD patient was found to be homozygous for the p.W1145R mutation. The most common mutations were p.F508del (DeltaF508) (18.1%), c.2183_2184delAAinsG (2183AA>G) (6.5%), p.S466X (5.8%), p.N1303K (4.3%), c.2789+5G>A (4.3%), p.G542X (3.6%), c.3120+1G>A (3.6%), p.R334W (2.9%) and c.3130delA (2.9%). These 9 types of mutant CFTR genes totaled for 52% of all CFTR genes derived from the 69 Iranian CF patients. Eight mutations, c.406-8T>C, p.A566D, c.2576delA, c.2752-1_2756delGGTGGCinsTTG, p.T1036I, p.W1145R, c.3850-24G>A, c.1342-?_1524+?del, were found for the first time in this study. We identified 37 CFTR mutations in 69 well characterized Iranian CF patients, obtaining a CFTR mutation detection rate of 81.9%, the highest detection rate obtained in the Iranian population so far. These findings will assist in genetic counseling, prenatal diagnosis and future screening of CF in Iran.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polymorphisms of N-acetyltransferases, glutathione S-transferases, microsomal epoxide hydrolase and sulfotransferases: influence on cancer susceptibility.

              It has become clear that several polymorphisms of human drug-metabolizing enzymes influence an individual's susceptibility for chemical carcinogenesis. This review gives an overview on relevant polymorphisms of four families of drug-metabolizing enzymes. Rapid acetylators (with respect to N-acetyltransferase NAT2) were shown to have an increased risk of colon cancer, but a decreased risk of bladder cancer. In addition an association between a NAT1 variant allele (NAT*10, due to mutations in the polyadenylation site causing approximately two fold higher activity) and colorectal cancer among NAT2 rapid acetylators was observed, suggesting a possible interaction between NAT1 and NAT2. Glutathione S-transferases M1 and T1 (GSTM1 and GSTT1) are polymorphic due to large deletions in the structural gene. Meta-analysis of 12 case-control studies demonstrated a significant association between the homozygous deletion of GSTM1 (GSTM1-0) and lung cancer (odds ratio: 1.41; 95% CI: 1.23-1.61). Combination of GSTM1-0 with two allelic variants of cytochrome P4501A1 (CYP1A1), CYP1A1 m2/m2 and CYP1A1 Val/Val further increases the risk for lung cancer. Indirect mechanisms by which deletion of GSTM1 increases risk for lung cancer may include GSTM1-0 associated decreased expression of GST M3 and increased activity of CYP1A1 and 1A2. Combination of GST M1-0 and NAT2 slow acetylation was associated with markedly increased risk for lung cancer (odds ratio: 7.8; 95% CI: 1.4-78.7). In addition GSTM1-0 is clearly associated with bladder cancer and possibly also with colorectal, hepatocellular, gastric, esophageal (interaction with CYP1A1), head and neck as well as cutaneous cancer. In individuals with the GSTT1-0 genotype more chromosomal aberrations and sister chromatid exchanges (SCEs) were observed after exposure to 1,3-butadiene or various haloalkanes or haloalkenes. Evidence for an association between GSTT1-0 and myelodysplastic syndrome and acute lymphoblastic leukemia has been presented. A polymorphic site of GSTP1 (valine to isoleucine at codon 104) decreases activity to several carcinogenic diol epoxides and was associated with testicular, bladder and lung cancer. Microsomal expoxide hydrolase (mEH) is polymorphic due to amino acid variation at residues 113 and 139. Polymorphic variants of mEH were associated with hepatocellular cancer (His-113 allele), ovarian cancer (Tyr-113 allele) and chronic obstructive pulmonary disease (His-113 allele). Three human sulfotransferases (STs) are regulated by genetic polymorphisms (hDHEAST, hM-PST, TS PST). Since a large number of environmental mutagens are activated by STs an association with human cancer risk might be expected.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                jbpneu
                Jornal Brasileiro de Pneumologia
                J. bras. pneumol.
                Sociedade Brasileira de Pneumologia e Tisiologia (São Paulo )
                1806-3756
                February 2012
                : 38
                : 1
                : 50-56
                Affiliations
                [1 ] Universidade Estadual de Campinas Brazil
                Article
                S1806-37132012000100008
                10.1590/S1806-37132012000100008
                c31b57f9-f258-4c73-8238-c79a098dd132

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=1806-3713&lng=en
                Categories
                RESPIRATORY SYSTEM

                Respiratory medicine
                Cystic fibrosis,Cystic fibrosis transmembrane conductance regulator,Glutathione transferase,Fibrose cística,Regulador de condutância transmembrana em fibrose cística,Glutationa transferase

                Comments

                Comment on this article