25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leptin signaling

      review-article
      1 , 2 ,
      F1000Prime Reports
      Faculty of 1000 Ltd

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leptin is secreted by adipose tissue and regulates energy homeostasis, glucose and lipid metabolism, immune function, and other systems. The binding of leptin to its specific receptor activates various intracellular signaling pathways, including Janus kinase 2 (JAK2)/ signal transducer and activator of transcription 3 (STAT3), insulin receptor substrate (IRS)/phosphatidylinositol 3 kinase (PI3K), SH2-containing protein tyrosine phosphatase 2 (SHP2)/mitogen-activated protein kinase (MAPK), and 5' adenosine monophosphate-activated protein kinase (AMPK)/ acetyl-CoA carboxylase (ACC), in the central nervous system and peripheral tissues. Understanding of leptin signaling provides insights into its roles in health and disease.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          A key role of leptin in the control of regulatory T cell proliferation.

          We report here that leptin can act as a negative signal for the proliferation of human naturally occurring Foxp3(+)CD4(+)CD25(+) regulatory T (T(reg)) cells. Freshly isolated T(reg) cells produced leptin and expressed high amounts of leptin receptor (ObR). In vitro neutralization with leptin monoclonal antibody (mAb), during anti-CD3 and anti-CD28 stimulation, resulted in T(reg) cell proliferation, which was interleukin-2 (IL-2) dependent. T(reg) cells that proliferated in the presence of leptin mAb had increased expression of Foxp3 and remained suppressive. The phenomena appeared secondary to leptin signaling via ObR and, importantly, leptin neutralization reversed the anergic state of the T(reg) cells, as indicated by downmodulation of the cyclin-dependent kinase inhibitor p27 (p27(kip1)) and the phosphorylation of the extracellular-related kinases 1 (ERK1) and ERK2. Together with the finding of enhanced proliferation of T(reg) cells observed in leptin- and ObR-deficient mice, these results suggest a potential for therapeutic interventions in immune and autoimmune diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Leptin and Inflammation.

            The past few years of research on leptin have provided important information on the link between metabolism and immune homeostasis. Adipocytes influence not only the endocrine system but also the immune response through several cytokine-like mediators known as adipokines, which include leptin. It is widely accepted that leptin can directly link nutritional status and pro-inflammatory T helper 1 immune responses, and that a decrease of leptin plasma concentration during food deprivation can lead to an impaired immune function. Additionally, several studies have implicated leptin in the pathogenesis of chronic inflammation, and the elevated circulating leptin levels in obesity appear to contribute to the low-grade inflammatory background which makes obese individuals more susceptible to increased risk of developing cardiovascular diseases, type II diabetes, or degenerative disease including autoimmunity and cancer. Conversely, reduced levels of leptin such as those found in malnourished individuals have been linked to increased risk of infection and reduced cell-mediated immune responses. We discuss here the functional influences of leptin in the physiopathology of inflammation, and the effects of leptin in the modulation of such responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The hypothalamic arcuate nucleus: a key site for mediating leptin's effects on glucose homeostasis and locomotor activity.

              Leptin is required for normal energy and glucose homeostasis. The hypothalamic arcuate nucleus (ARH) has been proposed as an important site of leptin action. To assess the physiological significance of leptin signaling in the ARH, we used mice homozygous for a FLPe-reactivatable, leptin receptor null allele (Lepr(neo/neo) mice). Similar to Lepr(db/db) mice, these mice are obese, hyperglycemic, hyperinsulinemic, infertile, and hypoactive. To selectively restore leptin signaling in the ARH, we generated an adeno-associated virus expressing FLPe-recombinase, which was delivered unilaterally into the hypothalamus using stereotaxic injections. We found that unilateral restoration of leptin signaling in the ARH of Lepr(neo/neo) mice leads to a modest decrease in body weight and food intake. In contrast, unilateral reactivation markedly improved hyperinsulinemia and normalized blood glucose levels and locomotor activity. These data demonstrate that leptin signaling in the ARH is sufficient for mediating leptin's effects on glucose homeostasis and locomotor activity.
                Bookmark

                Author and article information

                Contributors
                Journal
                F1000Prime Rep
                F1000Prime Rep
                F1000Prime Reports
                Faculty of 1000 Ltd
                2051-7599
                04 September 2014
                2014
                : 6
                : 73
                Affiliations
                [1 ]Department of Internal Medicine, Soonchunhyang University College of Medicine 22, Daesagwan-gil (657 Hannam-dong), Yongsan-gu, SeoulKorea
                [2 ]Division of Endocrinology, Diabetes and Metabolism, and the Institute for Diabetes, Obesity and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania 12-104 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, Pennsylvania 19104USA
                Article
                73
                10.12703/P6-73
                4166933
                25343030
                c3245164-5b09-467b-9ca9-0f442a0339f3
                © 2014 Faculty of 1000 Ltd

                All F1000Prime Reports articles are distributed under the terms of the Creative Commons Attribution-Non Commercial License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Review Article

                Comments

                Comment on this article