12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Polyethylene glycol (PEG)-induced mouse model of choroidal neovascularization.

      The Journal of Biological Chemistry
      Animals, Choroidal Neovascularization, chemically induced, metabolism, pathology, Complement C3, Complement C9, Disease Models, Animal, Drug Carriers, adverse effects, pharmacology, Macular Degeneration, Mice, Polyethylene Glycols, Time Factors, Transforming Growth Factor beta2, Vascular Endothelial Growth Factor A

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we describe a new method for inducing choroidal neovascularization (CNV) in C57BL/6 mice, an animal model of wet age-related macular degeneration (AMD). AMD is a disease that causes central blindness in humans. We injected PEG-8 subretinally in different doses (0.125-2 mg) to induce CNV. After PEG-8 injection, we examined CNV at several time points (days 3-42). We also used Western blotting, immunohistochemistry, and ELISA to examine the complement component C3 split products, C9, VEGF, TGF-β2, and basic FGF. As early as day 1 after treatment, we found that a single subretinal injection of 1 mg of PEG-8 increased the C3 split products and the C9, TGF-β2, and basic FGF levels in the retinal pigment epithelium-choroid tissue. By day 3 after PEG-8 injection, the intraocular activation of the complement system caused induction and progression of CNV, including new vessels penetrating the Bruch's membrane. At day 5 after PEG-8 injection, we observed a fully developed CNV and retinal degeneration. Thus, in this study, we present a new, inexpensive, and accelerated mouse model of CNV that may be useful to study AMD.

          Related collections

          Author and article information

          Comments

          Comment on this article