11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low expression of GATA3 promotes cell proliferation and metastasis in gastric cancer

      research-article
      1 , 2 , 1 , 3
      Cancer Management and Research
      Dove Medical Press
      invasion, EMT, ZEB1

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          GATA3, a member of the GATA zinc finger transcription factor family, has been widely investigated for its role in cancer. Although a recent report has found that GATA3 is downregulated in gastric cancer (GC), the detailed mechanism of GATA3 in GC is still unknown. Here, we investigated whether GATA3 was downregulated in GC patients’ tissue samples and cell lines using quantitative real time polymerase chain reaction and Western blotting. In addition, we conducted several functional experiments to investigate the effect of GATA3 in GC, including cell proliferation, metastasis and epithelial–mesenchymal transition (EMT). The results showed that GATA3 was downregulated in GC tissue samples and cells. Moreover, the expression of GATA3 was associated with tumor size, stage and metastasis. Restoration of GATA3 levels suppressed GC cell proliferation, migration and invasion. Furthermore, chromatin immunoprecipitation and luciferase reporter assay also revealed that GATA3 transcriptionally regulated ZEB1, thereby suppressing EMT. All these findings suggest that GATA3 serves as an oncogene in GC development.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland.

          The GATA family of transcription factors plays fundamental roles in cell-fate specification. However, it is unclear if these genes are necessary for the maintenance of cellular differentiation after development. We identified GATA-3 as the most highly enriched transcription factor in the mammary epithelium of pubertal mice. GATA-3 was found in the luminal cells of mammary ducts and the body cells of terminal end buds (TEBs). Upon conditional deletion of GATA-3, mice exhibited severe defects in mammary development due to failure in TEB formation during puberty. After acute GATA-3 loss, adult mice exhibited undifferentiated luminal cell expansion with basement-membrane detachment, which led to caspase-mediated cell death in the long term. Further, FOXA1 was identified as a downstream target of GATA-3 in the mammary gland. This suggests that GATA-3 actively maintains luminal epithelial differentiation in the adult mammary gland, which raises important implications for the pathogenesis of breast cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Function of GATA transcription factors in preadipocyte-adipocyte transition.

            Genes that control the early stages of adipogenesis remain largely unknown. Here, we show that murine GATA-2 and GATA-3 are specifically expressed in white adipocyte precursors and that their down-regulation sets the stage for terminal differentiation. Constitutive GATA-2 and GATA-3 expression suppressed adipocyte differentiation and trapped cells at the preadipocyte stage. This effect is mediated, at least in part, through the direct suppression of peroxisome proliferator-activated receptor gamma. GATA-3-deficient embryonic stem cells exhibit an enhanced capacity to differentiate into adipocytes, and defective GATA-2 and GATA-3 expression is associated with obesity. Thus, GATA-2 and GATA-3 regulate adipocyte differentiation through molecular control of the preadipocyte-adipocyte transition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Overexpression of Snail induces epithelial–mesenchymal transition and a cancer stem cell–like phenotype in human colorectal cancer cells

              Epithelial–mesenchymal transition (EMT) is a critical process providing tumor cells with the ability to migrate and escape from the primary tumor and metastasize to distant sites. Recently, EMT was shown to be associated with the cancer stem cell (CSC) phenotype in breast cancer. Snail is a transcription factor that mediates EMT in a number of tumor types, including colorectal cancer (CRC). Our study was done to determine the role of Snail in mediating EMT and CSC function in CRC. Human CRC specimens were stained for Snail expression, and human CRC cell lines were transduced with a retroviral Snail construct or vector control. Cell proliferation and chemosensitivity to oxaliplatin of the infected cells were determined by the MTT (colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Migration and invasion were determined in vitro using modified Boyden chamber assays. EMT and putative CSC markers were analyzed using Western blotting. Intravenous injection of tumor cells was done to evaluate their metastatic potential in mice. Snail was overexpressed in human CRC surgical specimens. This overexpression induced EMT and a CSC-like phenotype in human CRC cells and enhanced cell migration and invasion (P < 0.002 vs. control). Snail overexpression also led to an increase in metastasis formation in vivo (P < 0.002 vs. control). Furthermore, the Snail-overexpressing CRC cells were more chemoresistant to oxaliplatin than control cells. Increased Snail expression induces EMT and the CSC-like phenotype in CRC cells, which enhance cancer cell invasion and chemoresistance. Thus, Snail is a potential therapeutic target in metastatic CRC.
                Bookmark

                Author and article information

                Journal
                Cancer Manag Res
                Cancer Manag Res
                Cancer Management and Research
                Cancer Management and Research
                Dove Medical Press
                1179-1322
                2017
                07 December 2017
                : 9
                : 769-780
                Affiliations
                [1 ]Department of Gastroenterology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital
                [2 ]Department of Gastroenterology, Huashan Hospital, Fudan University
                [3 ]School of Life Science, Shanghai University, Shanghai, People’s Republic of China
                Author notes
                Correspondence: Shuangqin Wei, Department of Gastroenterology, Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong District, Shanghai 201318, People’s Republic of China, Tel +86 21 6813 5590, Email sq_wei@ 123456yeah.net
                Article
                cmar-9-769
                10.2147/CMAR.S147973
                5724715
                c32b97c4-b3cc-41a3-ac52-2c788d315f20
                © 2017 Wei et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Oncology & Radiotherapy
                invasion,emt,zeb1
                Oncology & Radiotherapy
                invasion, emt, zeb1

                Comments

                Comment on this article