156
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide DNA Methylation Analysis of Human Pancreatic Islets from Type 2 Diabetic and Non-Diabetic Donors Identifies Candidate Genes That Influence Insulin Secretion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Impaired insulin secretion is a hallmark of type 2 diabetes (T2D). Epigenetics may affect disease susceptibility. To describe the human methylome in pancreatic islets and determine the epigenetic basis of T2D, we analyzed DNA methylation of 479,927 CpG sites and the transcriptome in pancreatic islets from T2D and non-diabetic donors. We provide a detailed map of the global DNA methylation pattern in human islets, β- and α-cells. Genomic regions close to the transcription start site showed low degrees of methylation and regions further away from the transcription start site such as the gene body, 3′UTR and intergenic regions showed a higher degree of methylation. While CpG islands were hypomethylated, the surrounding 2 kb shores showed an intermediate degree of methylation, whereas regions further away (shelves and open sea) were hypermethylated in human islets, β- and α-cells. We identified 1,649 CpG sites and 853 genes, including TCF7L2, FTO and KCNQ1, with differential DNA methylation in T2D islets after correction for multiple testing. The majority of the differentially methylated CpG sites had an intermediate degree of methylation and were underrepresented in CpG islands (∼7%) and overrepresented in the open sea (∼60%). 102 of the differentially methylated genes, including CDKN1A, PDE7B, SEPT9 and EXOC3L2, were differentially expressed in T2D islets. Methylation of CDKN1A and PDE7B promoters in vitro suppressed their transcriptional activity. Functional analyses demonstrated that identified candidate genes affect pancreatic β- and α-cells as Exoc3l silencing reduced exocytosis and overexpression of Cdkn1a, Pde7b and Sept9 perturbed insulin and glucagon secretion in clonal β- and α-cells, respectively. Together, our data can serve as a reference methylome in human islets. We provide new target genes with altered DNA methylation and expression in human T2D islets that contribute to perturbed insulin and glucagon secretion. These results highlight the importance of epigenetics in the pathogenesis of T2D.

          Author Summary

          Epigenetic modifications such as DNA methylation are implicated in the development of human disease. However, genome-wide epigenetic analyses in patients with type 2 diabetes (T2D) remain scarce. In this study we aimed to unravel the epigenetic basis of T2D by analyzing DNA methylation of 479,927 CpG sites in human pancreatic islets from T2D and non-diabetic donors. We identified 1,649 CpG sites and 853 genes with differential DNA methylation (fold change 6–59%) in T2D islets. These include reported diabetes loci, such as TCF7L2, FTO and KCNQ1. Furthermore, we found 102 genes that showed both differential DNA methylation and gene expression in T2D islets, including CDKN1A, PDE7B, SEPT9 and EXOC3L2. Finally, we provide functional proof that identified candidate genes directly affect insulin secretion and exocytosis in pancreatic β-cells as well as glucagon secretion in α-cells. Overall, this study provides a detailed map of the methylome in human pancreatic islets and demonstrates that altered DNA methylation in human islets contributes to perturbed hormone secretion and the pathogenesis of T2D.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          High density DNA methylation array with single CpG site resolution.

          We have developed a new generation of genome-wide DNA methylation BeadChip which allows high-throughput methylation profiling of the human genome. The new high density BeadChip can assay over 480K CpG sites and analyze twelve samples in parallel. The innovative content includes coverage of 99% of RefSeq genes with multiple probes per gene, 96% of CpG islands from the UCSC database, CpG island shores and additional content selected from whole-genome bisulfite sequencing data and input from DNA methylation experts. The well-characterized Infinium® Assay is used for analysis of CpG methylation using bisulfite-converted genomic DNA. We applied this technology to analyze DNA methylation in normal and tumor DNA samples and compared results with whole-genome bisulfite sequencing (WGBS) data obtained for the same samples. Highly comparable DNA methylation profiles were generated by the array and sequencing methods (average R2 of 0.95). The ability to determine genome-wide methylation patterns will rapidly advance methylation research. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conserved Role of Intragenic DNA Methylation in Regulating Alternative Promoters

            While the methylation of DNA in 5′ promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear 1–5 . In mammals, tissue- and cell type-specific methylation is present in a small percentage of 5′ CpG island (CGI) promoters, while a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences 5–10 . Tissue-specific intragenic methylation might reduce, 3 or, paradoxically, enhance transcription elongation efficiency 1,2,4,5 . Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes 11–15 . To investigate the role of intragenic methylation, we generated a map of DNA methylation from human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were revealed to be in intragenic and intergenic regions, while less than 3% of CpG islands in 5′ promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters 16 . The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus 17,18 and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Epigenome-wide association studies for common human diseases.

              Despite the success of genome-wide association studies (GWASs) in identifying loci associated with common diseases, a substantial proportion of the causality remains unexplained. Recent advances in genomic technologies have placed us in a position to initiate large-scale studies of human disease-associated epigenetic variation, specifically variation in DNA methylation. Such epigenome-wide association studies (EWASs) present novel opportunities but also create new challenges that are not encountered in GWASs. We discuss EWAS design, cohort and sample selections, statistical significance and power, confounding factors and follow-up studies. We also discuss how integration of EWASs with GWASs can help to dissect complex GWAS haplotypes for functional analysis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                March 2014
                6 March 2014
                : 10
                : 3
                : e1004160
                Affiliations
                [1 ]Epigenetics and Diabetes, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Malmö, Sweden
                [2 ]Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
                [3 ]Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Malmö, Sweden
                Albert Einstein College of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TD PV SS EH EN AHO CLK CBW LE KB TR CL. Performed the experiments: TD SS EH CLK LE KB. Analyzed the data: TD PV SS EH EN AHO CLK CBW LE KB TR CL. Contributed reagents/materials/analysis tools: PV SS CLK CBW LE KB. Wrote the paper: TD CL. Reviewed and revised the manuscript critically: TD PV SS EH EN AHO CLK CBW LE KB TR CL.

                Article
                PGENETICS-D-13-01899
                10.1371/journal.pgen.1004160
                3945174
                24603685
                c32d64ff-7908-4ab9-a5fd-90f6be0417bf
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 July 2013
                : 20 December 2013
                Page count
                Pages: 20
                Funding
                This work was supported by grants from the Swedish Research Council, Region Skåne, Knut and Alice Wallenberg Foundation, Novo Nordisk Foundation, Söderberg Foundation, Diabetes Fonden, Påhlsson Foundation and Linné grant (B31 5631/2006). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Genome Analysis Tools
                Transcriptomes
                Molecular Genetics
                Gene Expression
                Genetics
                Epigenetics
                Human Genetics
                Medicine
                Endocrinology
                Diabetic Endocrinology
                Diabetes Mellitus Type 2
                Gastroenterology and Hepatology
                Pancreas

                Genetics
                Genetics

                Comments

                Comment on this article