10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ocular fundus pulsations within the posterior rat eye: Chorioscleral motion and response to elevated intraocular pressure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A multi-functional optical coherence tomography (OCT) approach is presented to determine ocular fundus pulsations as an axial displacement between the retina and the chorioscleral complex in the albino rat eye. By combining optical coherence elastography and OCT angiography (OCTA), we measure subtle deformations in the nanometer range within the eye and simultaneously map retinal and choroidal perfusion. The conventional OCT reflectivity contrast serves as a backbone to segment the retina and to define several slabs which are subsequently used for quantitative ocular pulsation measurements as well as for a qualitative exploration of the multi-functional OCT image data. The proposed concept is applied in healthy albino rats as well as in rats under acute elevation of the intraocular pressure (IOP). The evaluation of this experiment revealed an increased pulsatility and deformation between the retinal and chorioscleral complex while increasing the IOP level from 15 mmHg to 65 mmHg. At IOP levels exceeding 65 mmHg, the pulsatility decreased significantly and retinal as well as choroidal perfusion vanished in OCTA. Furthermore, the evaluation of the multi-parametric experiment revealed a spatial correlation between fundus pulsatility and choroidal blood flow. This indicates that the assessed pulsatility may be a valuable parameter describing the choroidal perfusion.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Optical coherence angiography.

          Noninvasive angiography is demonstrated for the in vivo human eye. Three-dimensional flow imaging has been performed with high-speed spectral-domain optical coherence tomography. Sample motion is compensated by two algorithms. Axial motion between adjacent A-lines within one OCT image is compensated by the Doppler shift due to bulk sample motion. Axial displacements between neighboring images are compensated by a correlation-based algorithm. Three-dimensional vasculature of ocular vessels has been visualized. By integrating volume sets of flow images, two-dimensional images of blood vessels are obtained. Retinal and choroidal blood vessel images are simultaneously obtained by separating the volume set into retinal part and choroidal parts. These are corresponding to fluorescein angiogram and indocyanine angiogram.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optical coherence tomography based angiography [Invited].

            Optical coherence tomography (OCT)-based angiography (OCTA) provides in vivo, three-dimensional vascular information by the use of flowing red blood cells as intrinsic contrast agents, enabling the visualization of functional vessel networks within microcirculatory tissue beds non-invasively, without a need of dye injection. Because of these attributes, OCTA has been rapidly translated to clinical ophthalmology within a short period of time in the development. Various OCTA algorithms have been developed to detect the functional micro-vasculatures in vivo by utilizing different components of OCT signals, including phase-signal-based OCTA, intensity-signal-based OCTA and complex-signal-based OCTA. All these algorithms have shown, in one way or another, their clinical values in revealing micro-vasculatures in biological tissues in vivo, identifying abnormal vascular networks or vessel impairment zones in retinal and skin pathologies, detecting vessel patterns and angiogenesis in eyes with age-related macular degeneration and in skin and brain with tumors, and monitoring responses to hypoxia in the brain tissue. The purpose of this paper is to provide a technical oriented overview of the OCTA developments and their potential pre-clinical and clinical applications, and to shed some lights on its future perspectives. Because of its clinical translation to ophthalmology, this review intentionally places a slightly more weight on ophthalmic OCT angiography.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Doppler Optical Coherence Tomography

              Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases.
                Bookmark

                Author and article information

                Contributors
                marco.augustin@meduniwien.ac.at
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 August 2017
                18 August 2017
                2017
                : 7
                : 8780
                Affiliations
                [1 ]ISNI 0000 0000 9259 8492, GRID grid.22937.3d, , Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, ; 1090 Vienna, Austria
                [2 ]ISNI 0000 0000 9259 8492, GRID grid.22937.3d, , General Hospital and Medical University of Vienna, Department of Clinical Pharmacology, ; 1090 Vienna, Austria
                [3 ]ISNI 0000 0001 0706 4670, GRID grid.272555.2, , Singapore Eye Research Institute, The Academia, ; 169856 Singapore, Republic of Singapore
                [4 ]ISNI 0000 0001 2224 0361, GRID grid.59025.3b, , Lee Kong Chian School of Medicine, Nanyang Technological University, ; 308232 Singapore, Republic of Singapore
                Author information
                http://orcid.org/0000-0002-1019-0907
                http://orcid.org/0000-0001-6419-1932
                Article
                9310
                10.1038/s41598-017-09310-1
                5562765
                28821834
                c34095bf-0e96-40dd-9874-9767407553de
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 May 2017
                : 25 July 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article