30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparison of Digitalis Sensitivities of Na +/K +-ATPases from Human and Pig Kidneys

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Digitalis drugs are selective inhibitors of the plasma membrane Na +/K +-ATPase. There are many studies on molecular mechanisms of digitalis interaction with purified pig kidney enzyme, with the tacit assumption that it is a good model of human kidney enzyme. However, previous studies on crude or recombinant human kidney enzymes are limited, and have not resulted in consistent findings on their digitalis sensitivities. Hence, we prepared comparably purified enzymes from human and pig kidneys and determined inhibitory constants of digoxin, ouabain, ouabagenin, bufalin, and marinobufagenin (MBG) on enzyme activity under optimal turnover conditions. We found that each compound had the same potency against the two enzymes, indicating that (i) the pig enzyme is an appropriate model of the human enzyme, and (ii) prior discrepant findings on human kidney enzymes were either due to structural differences between the natural and recombinant enzymes or because potencies were determined using binding constants of digitalis for enzymes under nonphysiological conditions. In conjunction with previous findings, our newly determined inhibitory constants of digitalis compounds for human kidney enzymes indicate that (i) of the compounds that have long been advocated to be endogenous hormones, only bufalin and MBG may act as such at kidney tubules, and (ii) beneficial effects of digoxin, the only digitalis with extensive clinical use, does not involve its inhibitory effect on renal tubular Na +/K +-ATPase.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          An improved assay for nanomole amounts of inorganic phosphate.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site.

            The Na(+),K(+)-ATPase maintains electrochemical gradients for Na(+) and K(+) that are critical for animal cells. Cardiotonic steroids (CTSs), widely used in the clinic and recently assigned a role as endogenous regulators of intracellular processes, are highly specific inhibitors of the Na(+),K(+)-ATPase. Here we describe a crystal structure of the phosphorylated pig kidney Na(+),K(+)-ATPase in complex with the CTS representative ouabain, extending to 3.4 Å resolution. The structure provides key details on CTS binding, revealing an extensive hydrogen bonding network formed by the β-surface of the steroid core of ouabain and the side chains of αM1, αM2, and αM6. Furthermore, the structure reveals that cation transport site II is occupied by Mg(2+), and crystallographic studies indicate that Rb(+) and Mn(2+), but not Na(+), bind to this site. Comparison with the low-affinity [K2]E2-MgF(x)-ouabain structure [Ogawa et al. (2009) Proc Natl Acad Sci USA 106(33):13742-13747) shows that the CTS binding pocket of [Mg]E2P allows deep ouabain binding with possible long-range interactions between its polarized five-membered lactone ring and the Mg(2+). K(+) binding at the same site unwinds a turn of αM4, dragging residues Ile318-Val325 toward the cation site and thereby hindering deep ouabain binding. Thus, the structural data establish a basis for the interpretation of the biochemical evidence pointing at direct K(+)-Mg(2+) competition and explain the well-known antagonistic effect of K(+) on CTS binding.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transport and pharmacological properties of nine different human Na, K-ATPase isozymes.

              Na,K-ATPase plays a crucial role in cellular ion homeostasis and is the pharmacological receptor for digitalis in man. Nine different human Na,K-ATPase isozymes, composed of 3 alpha and beta isoforms, were expressed in Xenopus oocytes and were analyzed for their transport and pharmacological properties. According to ouabain binding and K(+)-activated pump current measurements, all human isozymes are functional but differ in their turnover rates depending on the alpha isoform. On the other hand, variations in external K(+) activation are determined by a cooperative interaction mechanism between alpha and beta isoforms with alpha2-beta2 complexes having the lowest apparent K(+) affinity. alpha Isoforms influence the apparent internal Na(+) affinity in the order alpha1 > alpha2 > alpha3 and the voltage dependence in the order alpha2 > alpha1 > alpha3. All human Na,K-ATPase isozymes have a similar, high affinity for ouabain. However, alpha2-beta isozymes exhibit more rapid ouabain association as well as dissociation rate constants than alpha1-beta and alpha3-beta isozymes. Finally, isoform-specific differences exist in the K(+)/ouabain antagonism which may protect alpha1 but not alpha2 or alpha3 from digitalis inhibition at physiological K(+) levels. In conclusion, our study reveals several new functional characteristics of human Na,K-ATPase isozymes which help to better understand their role in ion homeostasis in different tissues and in digitalis action and toxicity.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                13 July 2017
                31 July 2017
                : 2
                : 7
                : 3610-3615
                Affiliations
                []Department Biochemistry & Cancer Biology, College of Medicine & Life Sciences, University of Toledo , 3000 Arlington Avenue, MS 1010, Toledo, Ohio 43614, United States
                []Laboratory of Cardiovascular Science, National Institute of Aging, National Institutes of Health , Baltimore, Maryland 21224, United States
                [§ ]Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences , St. Petersburg 194223, Russia
                Author notes
                [* ]E-mail: Amir.Askari@ 123456utoledo.edu . Phone: 419-383-3982.
                Article
                10.1021/acsomega.7b00591
                5537699
                28782051
                c3530861-4983-455f-988e-7850cb9ffc2d
                Copyright © 2017 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 11 May 2017
                : 06 July 2017
                Categories
                Article
                Custom metadata
                ao7b00591
                ao-2017-00591e

                Comments

                Comment on this article