50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fate-tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its etiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although organ fibrosis causes significant morbidity and mortality in chronic diseases, the lack of detailed knowledge about specific cellular contributors mediating fibrogenesis hampers the design of effective anti-fibrotic therapies. Different cellular sources including tissue-resident and bone marrow-derived fibroblasts, pericytes and epithelial cells have been suggested to give rise to myofibroblasts, but their relative contributions remain controversial, with profound differences between organs and different diseases. Here we employ a novel Cre-transgenic mouse that marks 99% of hepatic stellate cells (HSCs), a liver-specific pericyte population, to demonstrate that HSCs give rise to 82-96% of myofibroblasts in models of toxic, cholestatic and fatty liver disease. Moreover, we exclude that HSCs function as facultative epithelial progenitor cells in the injured liver. On the basis of these findings, HSCs should be considered the primary cellular target for anti-fibrotic therapies across all types of liver disease.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: found
          • Article: not found

          Liver fibrosis.

          Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-beta1, angiotensin II, and leptin. Reversibility of advanced liver fibrosis in patients has been recently documented, which has stimulated researchers to develop antifibrotic drugs. Emerging antifibrotic therapies are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans is unknown. This review summarizes recent progress in the study of the pathogenesis and diagnosis of liver fibrosis and discusses current antifibrotic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Origin and function of myofibroblasts in kidney fibrosis.

            Myofibroblasts are associated with organ fibrosis, but their precise origin and functional role remain unknown. We used multiple genetically engineered mice to track, fate map and ablate cells to determine the source and function of myofibroblasts in kidney fibrosis. Through this comprehensive analysis, we identified that the total pool of myofibroblasts is split, with 50% arising from local resident fibroblasts through proliferation. The nonproliferating myofibroblasts derive through differentiation from bone marrow (35%), the endothelial-to-mesenchymal transition program (10%) and the epithelial-to-mesenchymal transition program (5%). Specific deletion of Tgfbr2 in α-smooth muscle actin (αSMA)(+) cells revealed the importance of this pathway in the recruitment of myofibroblasts through differentiation. Using genetic mouse models and a fate-mapping strategy, we determined that vascular pericytes probably do not contribute to the emergence of myofibroblasts or fibrosis. Our data suggest that targeting diverse pathways is required to substantially inhibit the composite accumulation of myofibroblasts in kidney fibrosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The myofibroblast in wound healing and fibrocontractive diseases.

               G Gabbiani (2003)
              The demonstration that fibroblastic cells acquire contractile features during the healing of an open wound, thus modulating into myofibroblasts, has open a new perspective in the understanding of mechanisms leading to wound closure and fibrocontractive diseases. Myofibroblasts synthesize extracellular matrix components such as collagen types I and III and during normal wound healing disappear by apoptosis when epithelialization occurs. The transition from fibroblasts to myofibroblasts is influenced by mechanical stress, TGF-beta and cellular fibronectin (ED-A splice variant). These factors also play important roles in the development of fibrocontractive changes, such as those observed in liver cirrhosis, renal fibrosis, and stroma reaction to epithelial tumours. Copyright 2003 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                101528555
                37539
                Nat Commun
                Nat Commun
                Nature communications
                2041-1723
                13 January 2014
                2013
                16 June 2014
                : 4
                : 2823
                Affiliations
                [1 ] Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
                [2 ] Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
                Author notes
                Correspondence: Robert F. Schwabe; Department of Medicine, Columbia University, College of Physicians & Surgeons, Russ Berrie Pavilion, Room 415, 1150 St. Nicholas Ave, New York, NY 10032; rfs2102@ 123456cumc.columbia.edu ; Tel: (212) 851-5462, Fax: (212) 851-5461
                Article
                NIHMS535216
                10.1038/ncomms3823
                4059406
                24264436

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article