3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolomics of Dynamic Changes in Insulin Resistance Before and After Exercise in PCOS

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Plasma elevated levels of branched chain amino acids (BCAA) and aromatic amino acids (AAA) have been associated with obesity and insulin resistance, but their relationship to stimulated insulin resistance (IR) in PCOS and in response to exercise is unknown. Indeed, it is unknown whether the mechanism of IR in PCOS is mediated through changes in the metabolome.

          Methods: Twelve women with polycystic ovary syndrome (PCOS) and ten age and body mass index matched controls completed an 8 week supervised exercise program at 60% maximal oxygen consumption. Before and after the exercise program, all participants underwent maximal IR stimulation with intralipid infusions followed by insulin sensitivity (IS) measurement by hyperinsulinaemic euglycaemic clamps. Amino acid profiles and metabolites were taken at baseline and at maximal insulin resistance stimulation before and after the exercise program.

          Results: At baseline, PCOS subjects showed increased leucine/isoleucine, glutamate, methionine, ornithine, phenylalanine, tyrosine and proline ( p < 0.05) that, following exercise, did not differ from controls. While compering within the groups, no significant changes in the amino acid levels before and after exercise were observed. Exercise improved VO2 max ( p < 0.01) but did not alter weight. Amino acid profiles were unaffected by an acute increase in IR induced by the lipid infusion. IS was lower in PCOS ( p < 0.001) and was further decreased by the lipid infusion in both PCOS and controls. Although, exercise improved IS in both PCOS and in controls, the IS remained compromised in PCOS.

          Conclusion: The baseline amino acid profile in PCOS reflected that seen in obese subjects and differed to controls. After exercise, and despite no change in weight in either group, there were no differences in the amino acid profile between PCOS and controls. This shows that exercise may normalize the amino acid metabolome, irrespective of weight.

          ISRCTN number: ISRCTN42448814

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Glucose clamp technique: a method for quantifying insulin secretion and resistance.

          Methods for the quantification of beta-cell sensitivity to glucose (hyperglycemic clamp technique) and of tissue sensitivity to insulin (euglycemic insulin clamp technique) are described. Hyperglycemic clamp technique. The plasma glucose concentration is acutely raised to 125 mg/dl above basal levels by a priming infusion of glucose. The desired hyperglycemic plateau is subsequently maintained by adjustment of a variable glucose infusion, based on the negative feedback principle. Because the plasma glucose concentration is held constant, the glucose infusion rate is an index of glucose metabolism. Under these conditions of constant hyperglycemia, the plasma insulin response is biphasic with an early burst of insulin release during the first 6 min followed by a gradually progressive increase in plasma insulin concentration. Euglycemic insulin clamp technique. The plasma insulin concentration is acutely raised and maintained at approximately 100 muU/ml by a prime-continuous infusion of insulin. The plasma glucose concentration is held constant at basal levels by a variable glucose infusion using the negative feedback principle. Under these steady-state conditions of euglycemia, the glucose infusion rate equals glucose uptake by all the tissues in the body and is therefore a measure of tissue sensitivity to exogenous insulin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome

            Study Question: What is the recommended assessment and management of women with polycystic ovary syndrome (PCOS), based on the best available evidence, clinical expertise, and consumer preference? Summary Answer: International evidence-based guidelines including 166 recommendations and practice points, addressed prioritized questions to promote consistent, evidence-based care and improve the experience and health outcomes of women with PCOS. What Is Known Already: Previous guidelines either lacked rigorous evidence-based processes, did not engage consumer and international multidisciplinary perspectives, or were outdated. Diagnosis of PCOS remains controversial and assessment and management are inconsistent. The needs of women with PCOS are not being adequately met and evidence practice gaps persist. Study Design, Size, Duration: International evidence-based guideline development engaged professional societies and consumer organizations with multidisciplinary experts and women with PCOS directly involved at all stages. Appraisal of Guidelines for Research and Evaluation (AGREE) II-compliant processes were followed, with extensive evidence synthesis. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework was applied across evidence quality, feasibility, acceptability, cost, implementation and ultimately recommendation strength. Participants/Materials, Setting, Methods: Governance included a six continent international advisory and a project board, five guideline development groups, and consumer and translation committees. Extensive health professional and consumer engagement informed guideline scope and priorities. Engaged international society-nominated panels included pediatrics, endocrinology, gynecology, primary care, reproductive endocrinology, obstetrics, psychiatry, psychology, dietetics, exercise physiology, public health and other experts, alongside consumers, project management, evidence synthesis, and translation experts. Thirty-seven societies and organizations covering 71 countries engaged in the process. Twenty face-to-face meetings over 15 months addressed 60 prioritized clinical questions involving 40 systematic and 20 narrative reviews. Evidence-based recommendations were developed and approved via consensus voting within the five guideline panels, modified based on international feedback and peer review, with final recommendations approved across all panels. Main Results and the Role of Chance: The evidence in the assessment and management of PCOS is generally of low to moderate quality. The guideline provides 31 evidence based recommendations, 59 clinical consensus recommendations and 76 clinical practice points all related to assessment and management of PCOS. Key changes in this guideline include: i) considerable refinement of individual diagnostic criteria with a focus on improving accuracy of diagnosis; ii) reducing unnecessary testing; iii) increasing focus on education, lifestyle modification, emotional wellbeing and quality of life; and iv) emphasizing evidence based medical therapy and cheaper and safer fertility management. Limitations, Reasons for Caution: Overall evidence is generally low to moderate quality, requiring significantly greater research in this neglected, yet common condition, especially around refining specific diagnostic features in PCOS. Regional health system variation is acknowledged and a process for guideline and translation resource adaptation is provided. Wider Implications of the Findings: The international guideline for the assessment and management of PCOS provides clinicians with clear advice on best practice based on the best available evidence, expert multidisciplinary input and consumer preferences. Research recommendations have been generated and a comprehensive multifaceted dissemination and translation program supports the guideline with an integrated evaluation program. Study Funding/Competing Interest(S): The guideline was primarily funded by the Australian National Health and Medical Research Council of Australia (NHMRC) supported by a partnership with ESHRE and the American Society for Reproductive Medicine. Guideline development group members did not receive payment. Travel expenses were covered by the sponsoring organizations. Disclosures of conflicts of interest were declared at the outset and updated throughout the guideline process, aligned with NHMRC guideline processes. Full details of conflicts declared across the guideline development groups are available at https://www.monash.edu/medicine/sphpm/mchri/pcos/guideline in the Register of disclosures of interest. Of named authors, Dr Costello has declared shares in Virtus Health and past sponsorship from Merck Serono for conference presentations. Prof. Laven declared grants from Ferring, Euroscreen and personal fees from Ferring, Euroscreen, Danone and Titus Healthcare. Prof. Norman has declared a minor shareholder interest in an IVF unit. The remaining authors have no conflicts of interest to declare. The guideline was peer reviewed by special interest groups across our partner and collaborating societies and consumer organizations, was independently assessed against AGREEII criteria and underwent methodological review. This guideline was approved by all members of the guideline development groups and was submitted for final approval by the NHMRC
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp.

              What is the prevalence of insulin resistance (IR) and the contributions of intrinsic and extrinsic IR in women diagnosed with polycystic ovary syndrome (PCOS) according to the Rotterdam criteria? We report novel clamp data in Rotterdam diagnosed PCOS women, using World Health Organization criteria for IR showing that women with PCOS have a high prevalence of IR, strengthening the evidence for an aetiological role of IR in both National Institutes of Health (NIH) and Rotterdam diagnosed PCOS in lean and overweight women. PCOS is a complex endocrine condition with a significant increased risk of gestational diabetes and type 2 diabetes. Using a cross-sectional study design, 20 overweight and 20 lean PCOS (Rotterdam criteria), 14 overweight and 19 lean body mass index (BMI)-matched control non-PCOS women underwent clinical measures of IR after a 3-month withdrawal of insulin sensitizers and the oral contraceptive pill. In an academic clinic setting, glucose infusion rate (GIR) on euglycaemic-hyperinsulinaemic clamp was investigated as a marker of insulin sensitivity. PCOS women were more IR than BMI-matched controls (main effect for BMI and PCOS; P < 0.001). IR was present in 75% of lean PCOS, 62% of overweight controls and 95% of overweight PCOS. Lean controls (mean ± SD; GIR 339 ± 76 mg min⁻¹ m⁻²) were less IR than lean PCOS (270 ± 66 mg min⁻¹ m⁻²), overweight controls (264 ± 66 mg min⁻¹ m⁻²) and overweight PCOS (175 ± 96 mg min⁻¹ m⁻²). The negative relationship between BMI and IR reflected by GIR was more marked in PCOS (y = 445.1 - 7.7x, R² = 0.42 (P < 0.0001) than controls (y = 435.5 - 4.6x, R² = 0.04 (P < 0.01)). The study did not use glucose tracer techniques to completely characterize the IR, as well as the lack of matching for body composition and age. IR is exacerbated by increased BMI, supporting intrinsic IR in PCOS. BMI impact on IR is greater in PCOS, than in controls, irrespective of visceral fat, prioritizing lifestyle intervention and the need for effective therapeutic interventions to address intrinsic IR and prevent diabetes in this high-risk population. This investigator-initiated trial was supported by grants from the National Health & Medical Research Council (NHMRC) Grant number 606553 (H.J.T., N.K.S. and S.K.H.) as well as Monash University and The Jean Hailes Foundation. H.J.T. is an NHMRC Research Fellow. N.K.S. is supported through the Australian Government's Collaborative Research Networks (CRN) programme. A.E.J. is a Jean Hailes and NHMRC scholarship holder. The authors declare that there is no conflict of interest associated with this manuscript.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                27 February 2019
                2019
                : 10
                : 116
                Affiliations
                [1] 1Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar , Doha, Qatar
                [2] 2Department of Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School , Hull, United Kingdom
                [3] 3Infectious Disease Epidemiology Group, Weill Cornell Medicine , Doha, Qatar
                [4] 4Translational Research Institute, Academic Health System, Hamad Medical Corporation , Doha, Qatar
                [5] 5Weill Cornell Medicine-Qatar , Doha, Qatar
                Author notes

                Edited by: William Colin Duncan, University of Edinburgh, United Kingdom

                Reviewed by: Suman Rice, St George's, University of London, United Kingdom; Mark Daniel Ross, Edinburgh Napier University, United Kingdom

                *Correspondence: Stephen L. Atkin sla2002@ 123456qatar-med.cornell.edu

                This article was submitted to Reproduction, a section of the journal Frontiers in Endocrinology

                †These authors have contributed equally to this work

                Article
                10.3389/fendo.2019.00116
                6400834
                30873121
                c362b1c4-3202-45fd-a82d-c3abb459700e
                Copyright © 2019 Halama, Aye, Dargham, Kulinski, Suhre and Atkin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 September 2018
                : 07 February 2019
                Page count
                Figures: 0, Tables: 6, Equations: 0, References: 42, Pages: 9, Words: 7040
                Categories
                Endocrinology
                Original Research

                Endocrinology & Diabetes
                insulin resistance,intralipid,exercise,pcos,metabolomics,amino acid
                Endocrinology & Diabetes
                insulin resistance, intralipid, exercise, pcos, metabolomics, amino acid

                Comments

                Comment on this article