41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Synthesis of embryonic tendon-like tissue by human marrow stromal/mesenchymal stem cells requires a three-dimensional environment and transforming growth factor β3

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tendon-like tissue generated from stem cells in vitro has the potential to replace tendons and ligaments lost through injury and disease. However, thus far, no information has been available on the mechanism of tendon formation in vitro and how to accelerate the process. We show here that human mesenchymal stem cells (MSCs) and bone marrow-derived mononuclear cells (BM-MNCs) can generate tendon-like tissue in 7 days mediated by transforming growth factor (TGF) β3. MSCs cultured in fixed-length fibrin gels spontaneously synthesized narrow-diameter collagen fibrils and exhibited fibripositors (actin-rich, collagen fibril-containing plasma membrane protrusions) identical to those that occur in embryonic tendon. In contrast, BM-MNCs did not synthesize tendon-like tissue under these conditions. We performed real-time PCR analysis of MSCs and BM-MNCs. MSCs upregulated genes encoding type I collagen, TGFβ3, and Smad2 at the time of maximum contraction of the tendon-like tissue (7 days). Western blot analysis showed phosphorylation of Smad2 at maximum contraction. The TGFβ inhibitor SB-431542, blocked the phosphorylation of Smad2 and stopped the formation of tendon-like tissue. Quantitative PCR showed that BM-MNCs expressed very low levels of TGFβ3 compared to MSCs. Therefore we added exogenous TGFβ3 protein to BM-MNCs in fibrin gels, which resulted in phosphorylation of Smad2, synthesis of collagen fibrils, the appearance of fibripositors at the plasma membrane, and the formation of tendon-like tissue. In conclusion, MSCs that self-generate TGFβ signaling or the addition of TGFβ3 protein to BM-MNCs in fixed-length fibrin gels spontaneously make embryonic tendon-like tissue in vitro within 7 days.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Adult mesenchymal stem cells for tissue engineering versus regenerative medicine.

          Adult mesenchymal stem cells (MSCs) can be isolated from bone marrow or marrow aspirates and because they are culture-dish adherent, they can be expanded in culture while maintaining their multipotency. The MSCs have been used in preclinical models for tissue engineering of bone, cartilage, muscle, marrow stroma, tendon, fat, and other connective tissues. These tissue-engineered materials show considerable promise for use in rebuilding damaged or diseased mesenchymal tissues. Unanticipated is the realization that the MSCs secrete a large spectrum of bioactive molecules. These molecules are immunosuppressive, especially for T-cells and, thus, allogeneic MSCs can be considered for therapeutic use. In this context, the secreted bioactive molecules provide a regenerative microenvironment for a variety of injured adult tissues to limit the area of damage and to mount a self-regulated regenerative response. This regenerative microenvironment is referred to as trophic activity and, therefore, MSCs appear to be valuable mediators for tissue repair and regeneration. The natural titers of MSCs that are drawn to sites of tissue injury can be augmented by allogeneic MSCs delivered via the bloodstream. Indeed, human clinical trials are now under way to use allogeneic MSCs for treatment of myocardial infarcts, graft-versus-host disease, Crohn's Disease, cartilage and meniscus repair, stroke, and spinal cord injury. This review summarizes the biological basis for the in vivo functioning of MSCs through development and aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche.

            The repair of injured tendons remains a great challenge, largely owing to a lack of in-depth characterization of tendon cells and their precursors. We show that human and mouse tendons harbor a unique cell population, termed tendon stem/progenitor cells (TSPCs), that has universal stem cell characteristics such as clonogenicity, multipotency and self-renewal capacity. The isolated TSPCs could regenerate tendon-like tissues after extended expansion in vitro and transplantation in vivo. Moreover, we show that TSPCs reside within a unique niche predominantly comprised of an extracellular matrix, and we identify biglycan (Bgn) and fibromodulin (Fmod) as two critical components that organize this niche. Depletion of Bgn and Fmod affects the differentiation of TSPCs by modulating bone morphogenetic protein signaling and impairs tendon formation in vivo. Our results, while offering new insights into the biology of tendon cells, may assist in future strategies to treat tendon diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Making sense of latent TGFbeta activation.

              TGFbeta is secreted as part of a latent complex that is targeted to the extracellular matrix. A variety of molecules, 'TGFbeta activators,' release TGFbeta from its latent state. The unusual temporal discontinuity of TGFbeta synthesis and action and the panoply of TGFbeta effects contribute to the interest in TGF-beta. However, the logical connections between TGFbeta synthesis, storage and action are obscure. We consider the latent TGFbeta complex as an extracellular sensor in which the TGFbeta propeptide functions as the detector, latent-TGFbeta-binding protein (LTBP) functions as the localizer, and TGF-beta functions as the effector. Such a view provides a logical continuity for various aspects of TGFbeta biology and allows us to appreciate TGFbeta biology from a new perspective.
                Bookmark

                Author and article information

                Journal
                Matrix Biol
                Matrix Biol
                Matrix Biology
                Elsevier
                0945-053X
                1569-1802
                1 October 2010
                October 2010
                : 29
                : 8
                : 668-677
                Affiliations
                Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, England, United Kingdom
                Author notes
                [* ]Corresponding author. Tel.: + 44 161 275 5086; fax: + 44 161 275 1505. karl.kadler@ 123456manchester.ac.uk
                Article
                MATBIO815
                10.1016/j.matbio.2010.08.005
                3611595
                20736064
                c371b3ce-f197-4eab-9181-da3cd80f5270
                © 2010 Elsevier B.V.

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 7 May 2008
                : 6 August 2010
                : 6 August 2010
                Categories
                Article

                Molecular biology
                msc, mesenchymal/marrow stromal stem cell,forces,differentiation,fibrin,collagen,signaling,bm-mnc, bone marrow-derived mononuclear cell

                Comments

                Comment on this article