8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Behaviour drives morphology: voluntary emersion patterns shape gill structure in genetically identical mangrove rivulus

      , ,
      Animal Behaviour
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The ecology of individuals: incidence and implications of individual specialization.

          Most empirical and theoretical studies of resource use and population dynamics treat conspecific individuals as ecologically equivalent. This simplification is only justified if interindividual niche variation is rare, weak, or has a trivial effect on ecological processes. This article reviews the incidence, degree, causes, and implications of individual-level niche variation to challenge these simplifications. Evidence for individual specialization is available for 93 species distributed across a broad range of taxonomic groups. Although few studies have quantified the degree to which individuals are specialized relative to their population, between-individual variation can sometimes comprise the majority of the population's niche width. The degree of individual specialization varies widely among species and among populations, reflecting a diverse array of physiological, behavioral, and ecological mechanisms that can generate intrapopulation variation. Finally, individual specialization has potentially important ecological, evolutionary, and conservation implications. Theory suggests that niche variation facilitates frequency-dependent interactions that can profoundly affect the population's stability, the amount of intraspecific competition, fitness-function shapes, and the population's capacity to diversify and speciate rapidly. Our collection of case studies suggests that individual specialization is a widespread but underappreciated phenomenon that poses many important but unanswered questions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Re-evaluating the costs and limits of adaptive phenotypic plasticity.

            When the optimal phenotype differs among environments, adaptive phenotypic plasticity can evolve unless constraints impede such evolution. Costs and limits of plasticity have been proposed as important constraints on the evolution of plasticity, yet confusion exists over their distinction. We attempt to clarify these concepts by reviewing their categorization and measurement, highlighting how costs and limits are defined in different currencies (and may describe the same phenomenon). Conclusions from studies that measure the costs of plasticity have been equivocal, but we caution that these conclusions may be premature owing to a potentially common correlation between environment-specific trait values and the magnitude of trait plasticities (i.e. multi-collinearity) that results in imprecise and/or biased estimates of the costs. Meanwhile, our understanding of the limits of plasticity, and how they may be underlain by the costs of plasticity, is still in its infancy. Based on our re-evaluation of these constraints, we discuss areas for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Production of different phenotypes from the same genotype in the same environment by developmental variation.

              The phenotype of an organism is determined by the genes, the environment and stochastic developmental events. Although recognized as a basic biological principle influencing life history, susceptibility to diseases, and probably evolution, developmental variation (DV) has been only poorly investigated due to the lack of a suitable model organism. This obstacle could be overcome by using the recently detected, robust and highly fecund parthenogenetic marbled crayfish as an experimental animal. Batch-mates of this clonal crayfish, which were shown to be isogenic by analysis of nuclear microsatellite loci, exhibited surprisingly broad ranges of variation in coloration, growth, life-span, reproduction, behaviour and number of sense organs, even when reared under identical conditions. Maximal variation was observed for the marmorated coloration, the pattern of which was unique in each of the several hundred individuals examined. Variation among identically raised batch-mates was also found with respect to fluctuating asymmetry, a traditional indicator of the epigenetic part of the phenotype, and global DNA methylation, an overall molecular marker of an animal's epigenetic state. Developmental variation was produced in all life stages, probably by reaction-diffusion-like patterning mechanisms in early development and non-linear, self-reinforcing circuitries involving behaviour and metabolism in later stages. Our data indicate that, despite being raised in the same environment, individual genotypes can map to numerous phenotypes via DV, thus generating variability among clone-mates and individuality in a parthenogenetic species. Our results further show that DV, an apparently ubiquitous phenomenon in animals and plants, can introduce components of randomness into life histories, modifying individual fitness and population dynamics. Possible perspectives of DV for evolutionary biology are discussed.
                Bookmark

                Author and article information

                Journal
                Animal Behaviour
                Animal Behaviour
                Elsevier BV
                00033472
                July 2011
                July 2011
                : 82
                : 1
                : 39-47
                Article
                10.1016/j.anbehav.2011.03.001
                c382573b-fa1f-462b-b719-2120c6ad9dac
                © 2011

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article