244
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ecdysteroids affect Drosophila ovarian stem cell niche formation and early germline differentiation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previously, it has been shown that in Drosophila steroid hormones are required for progression of oogenesis during late stages of egg maturation. Here, we show that ecdysteroids regulate progression through the early steps of germ cell lineage. Upon ecdysone signalling deficit germline stem cell progeny delay to switch on a differentiation programme. This differentiation impediment is associated with reduced TGF-β signalling in the germline and increased levels of cell adhesion complexes and cytoskeletal proteins in somatic escort cells. A co-activator of the ecdysone receptor, Taiman is the spatially restricted regulator of the ecdysone signalling pathway in soma. Additionally, when ecdysone signalling is perturbed during the process of somatic stem cell niche establishment enlarged functional niches able to host additional stem cells are formed.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila.

          In Drosophila, enhancer trap strategies allow rapid access to expression patterns, molecular data, and mutations in trapped genes. However, they do not give any information at the protein level, e.g., about the protein subcellular localization. Using the green fluorescent protein (GFP) as a mobile artificial exon carried by a transposable P-element, we have developed a protein trap system. We screened for individual flies, in which GFP tags full-length endogenous proteins expressed from their endogenous locus, allowing us to observe their cellular and subcellular distribution. GFP fusions are targeted to virtually any compartment of the cell. In the case of insertions in previously known genes, we observe that the subcellular localization of the fusion protein corresponds to the described distribution of the endogenous protein. The artificial GFP exon does not disturb upstream and downstream splicing events. Many insertions correspond to genes not predicted by the Drosophila Genome Project. Our results show the feasibility of a protein trap in Drosophila. GFP reveals in real time the dynamics of protein's distribution in the whole, live organism and provides useful markers for a number of cellular structures and compartments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A niche maintaining germ line stem cells in the Drosophila ovary.

            Stromal cells are thought to generate specific regulatory microenviroments or "niches" that control stem cell behavior. Characterizing stem cell niches in vivo remains an important goal that has been difficult to achieve. The individual ovarioles of the Drosophila ovary each contain about two germ line stem cells that maintain oocyte production. Here we show that anterior ovariolar somatic cells comprising three cell types act as a germ line stem cell niche. Germ line stem cells lost by normal or induced differentiation are efficiently replaced, and the ability to repopulate the niche increases the functional lifetime of ovarioles in vivo. Our studies implicate one of the somatic cell types, the cap cells, as a key niche component.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A discrete transcriptional silencer in the bam gene determines asymmetric division of the Drosophila germline stem cell.

              The Drosophila germline lineage depends on a complex microenvironment of extrinsic and intrinsic factors that regulate the self-renewing and asymmetric divisions of dedicated stem cells. Germline stem cells (GSCs) must express components of the Dpp cassette and the translational repressors Nanos and Pumilio, whereas cystoblasts require the bam and bgcn genes. Bam is especially attractive as a target of GSC differentiation factors because current evidence indicates that bam is both necessary and sufficient for cystoblast differentiation. In this paper, we have sought to distinguish between mutually exclusive transcriptional or post-transcriptional mechanisms as the primary regulators of bam expression in GSCs and cystoblasts. We find that bam transcription is active in young germ cells but is repressed specifically in GSCs. Activation depends on a 50 bp fragment that carries at least one germ cell-specific enhancer element. A non-overlapping 18 bp sequence carries a transcriptional silencer that prevents bam expression in the GSC. Promoters lacking this silencer cause bam expression in the GSC and concomitant GSC loss. Thus, asymmetry of the GSC division can be reduced to identifying the mechanism that selectively activates the silencer element in GSCs.
                Bookmark

                Author and article information

                Journal
                EMBO J
                The EMBO Journal
                Nature Publishing Group
                0261-4189
                1460-2075
                20 April 2011
                18 March 2011
                18 March 2011
                : 30
                : 8
                : 1549-1562
                Affiliations
                [1 ]simpleMax Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry , Göttingen, Germany
                Author notes
                [a ]Gene Expression and Signalling Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany. Tel.: +49 551 201 1656; Fax: +49 551 201 1755; E-mail: halyna.shcherbata@ 123456mpibpc.mpg.de
                Article
                emboj201173
                10.1038/emboj.2011.73
                3102283
                21423150
                c39afa25-5c57-4732-9246-7a40687ffae6
                Copyright © 2011, European Molecular Biology Organization

                This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial No Derivative Works 3.0 Unported License, which permits distribution and reproduction in any medium, provided the original author and source are credited. This license does not permit commercial exploitation or the creation of derivative works without specific permission.

                History
                : 09 November 2010
                : 22 February 2011
                Categories
                Article

                Molecular biology
                ecdysone signalling,stem cell niche,drosophila,germline stem cell
                Molecular biology
                ecdysone signalling, stem cell niche, drosophila, germline stem cell

                Comments

                Comment on this article