25
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute Ethanol Causes Hepatic Mitochondrial Depolarization in Mice: Role of Ethanol Metabolism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims

          An increase of ethanol metabolism and hepatic mitochondrial respiration occurs in vivo after a single binge of alcohol. Here, our aim was to determine how ethanol intake affects hepatic mitochondrial polarization status in vivo in relation to ethanol metabolism and steatosis.

          Methods

          Hepatic mitochondrial polarization, permeability transition (MPT), and reduce pyridine nucleotides, and steatosis in mice were monitored by intravital confocal/multiphoton microscopy of the fluorescence of rhodamine 123 (Rh123), calcein, NAD(P)H, and BODIPY493/503, respectively, after gavage with ethanol (1–6 g/kg).

          Results

          Mitochondria depolarized in an all-or-nothing fashion in individual hepatocytes as early as 1 h after alcohol. Depolarization was dose- and time-dependent, peaked after 6 to 12 h and maximally affected 94% of hepatocytes. This mitochondrial depolarization was not due to onset of the MPT. After 24 h, mitochondria of most hepatocytes recovered normal polarization and were indistinguishable from untreated after 7 days. Cell death monitored by propidium iodide staining, histology and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was low throughout. After alcohol, mitochondrial NAD(P)H autofluorescence increased and decreased, respectively, in hepatocytes with polarized and depolarized mitochondria. Ethanol also caused steatosis mainly in hepatocytes with depolarized mitochondria. Depolarization was linked to ethanol metabolism, since deficiency of alcohol dehydrogenase and cytochrome-P450 2E1 (CYP2E1), the major ethanol-metabolizing enzymes, decreased mitochondrial depolarization by ∼70% and ∼20%, respectively. Activation of aldehyde dehydrogenase decreased depolarization, whereas inhibition of aldehyde dehydrogenase enhanced depolarization. Activation of aldehyde dehydrogenase also markedly decreased steatosis.

          Conclusions

          Acute ethanol causes reversible hepatic mitochondrial depolarization in vivo that may contribute to steatosis and increased mitochondrial respiration. Onset of this mitochondrial depolarization is linked, at least in part, to metabolism of ethanol to acetaldehyde.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Mouse model of chronic and binge ethanol feeding (the NIAAA model).

          Chronic alcohol consumption is a leading cause of chronic liver disease worldwide, leading to cirrhosis and hepatocellular carcinoma. Currently, the most widely used model for alcoholic liver injury is ad libitum feeding with the Lieber-DeCarli liquid diet containing ethanol for 4-6 weeks; however, this model, without the addition of a secondary insult, only induces mild steatosis, slight elevation of serum alanine transaminase (ALT) and little or no inflammation. Here we describe a simple mouse model of alcoholic liver injury by chronic ethanol feeding (10-d ad libitum oral feeding with the Lieber-DeCarli ethanol liquid diet) plus a single binge ethanol feeding. This protocol for chronic-plus-single-binge ethanol feeding synergistically induces liver injury, inflammation and fatty liver, which mimics acute-on-chronic alcoholic liver injury in patients. This feeding protocol can also be extended to chronic feeding for longer periods of time up to 8 weeks plus single or multiple binges. Chronic-binge ethanol feeding leads to high blood alcohol levels; thus, this simple model will be very useful for the study of alcoholic liver disease (ALD) and of other organs damaged by alcohol consumption.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis.

            Liver disease in the alcoholic is due not only to malnutrition but also to ethanol's hepatotoxicity linked to its metabolism by means of the alcohol dehydrogenase and cytochrome P450 2E1 (CYP2E1) pathways and the resulting production of toxic acetaldehyde. In addition, alcohol dehydrogenase-mediated ethanol metabolism generates the reduced form of nicotinamide adenine dinucleotide (NADH), which promotes steatosis by stimulating the synthesis of fatty acids and opposing their oxidation. Steatosis is also promoted by excess dietary lipids and can be attenuated by their replacement with medium-chain triglycerides. Through reduction of pyruvate, elevated NADH also increases lactate, which stimulates collagen synthesis in myofibroblasts. Furthermore, CYP2E1 activity is inducible by its substrates, not only ethanol but also fatty acids. Their excess and metabolism by means of this pathway generate release of free radicals, which cause oxidative stress, with peroxidation of lipids and membrane damage, including altered enzyme activities. Products of lipid peroxidation such as 4-hydroxynonenal stimulate collagen generation and fibrosis, which are further increased through diminished feedback inhibition of collagen synthesis because acetaldehyde forms adducts with the carboxyl-terminal propeptide of procollagen in hepatic stellate cells. Acetaldehyde is also toxic to the mitochondria, and it aggravates their oxidative stress by binding to reduced glutathione and promoting its leakage. Oxidative stress and associated cellular injury promote inflammation, which is aggravated by increased production of the proinflammatory cytokine tumor necrosis factor-alpha in the Kupffer cells. These are activated by induction of their CYP2E1 as well as by endotoxin. The endotoxin-stimulated tumor necrosis factor-alpha release is decreased by dilinoleoylphosphatidylcholine, the active phosphatidylcholine (PC) species of polyenylphosphatidylcholine (PPC). Moreover, defense mechanisms provided by peroxisome proliferator-activated receptor alpha and omega fatty acid oxidation are readily overwhelmed, particularly in female rats and also in women who have low hepatic induction of fatty acid-binding protein (L-FABPc). Accordingly, the intracellular concentration of free fatty acids may become high enough to injure membranes, thereby contributing to necrosis, inflammation, and progression to fibrosis and cirrhosis. Eventually, hepatic S-adenosylmethionine and PCs become depleted in the alcoholic, with impairment of their multiple cellular functions, which can be restored by PC replenishment. Thus, prevention and therapy opposing the development of steatosis and its progression to more severe injury can be achieved by a multifactorial approach: control of alcohol consumption, avoidance of obesity and of excess dietary long-chain fatty acids, or their replacement with medium-chain fatty acids, and replenishment of S-adenosylmethionine and PCs by using PPC. Progress in the understanding of the pathogenesis of alcoholic fatty liver and its progression to inflammation and fibrosis has resulted in prospects for their better prevention and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health.

              Mitochondrially generated reactive oxygen species are involved in a myriad of signaling and damaging pathways in different tissues. In addition, mitochondria are an important target of reactive oxygen and nitrogen species. Here, we discuss basic mechanisms of mitochondrial oxidant generation and removal and the main factors affecting mitochondrial redox balance. We also discuss the interaction between mitochondrial reactive oxygen and nitrogen species, and the involvement of these oxidants in mitochondrial diseases, cancer, neurological, and cardiovascular disorders.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                11 March 2014
                : 9
                : 3
                : e91308
                Affiliations
                [1 ]Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
                [2 ]Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
                [3 ]Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
                University of California, Merced, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ZZ JJL. Performed the experiments: ZZ VR HR QL TT YK. Analyzed the data: ZZ HR JJL. Contributed reagents/materials/analysis tools: ZZ JJL. Wrote the paper: ZZ JJL.

                [¤]

                Current address: Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia

                Article
                PONE-D-13-19739
                10.1371/journal.pone.0091308
                3950152
                24618581
                c39dc016-4b63-49fc-9afe-a420607aa822
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 May 2013
                : 12 February 2014
                Page count
                Pages: 13
                Funding
                This work was supported, in part, by Grants R01 AA0177561 and R01 DK37034 from the National Institutes of Health (NIH) and a grant from Charleston Alcohol Research Center [P50 AA010761]. The Cell & Molecular Imaging Core of the Hollings Cancer Center at the Medical University of South Carolina supported by NIH Grant 1P30 CA138313 provided instrumentation and assistance for confocal/multiphoton microscopy. The animals were housed in the Animal Resources at Medical University of South Carolina supported by NIH Grant C06 RR015455. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Digestive System
                Digestive Physiology
                Biochemistry
                Bioenergetics
                Energy-Producing Organelles
                Genetics
                Human Genetics
                Mitochondrial Diseases
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Clinical Genetics
                Mitochondrial Diseases
                Clinical Research Design
                Animal Models of Disease
                Gastroenterology and Hepatology
                Liver Diseases
                Alcoholic Liver Disease

                Uncategorized
                Uncategorized

                Comments

                Comment on this article