7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systems Network Genomic Analysis Reveals Cardioprotective Effect of MURC/Cavin‐4 Deletion Against Ischemia/Reperfusion Injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ischemia/reperfusion (I/R) injury is a critical issue in the development of treatment strategies for ischemic heart disease. MURC (muscle‐restricted coiled‐coil protein)/Cavin‐4 (caveolae‐associated protein 4), which is a component of caveolae, is involved in the pathophysiology of dilated cardiomyopathy and cardiac hypertrophy. However, the role of MURC in cardiac I/R injury remains unknown.

          Methods and Results

          The systems network genomic analysis based on PC‐corr network inference on microarray data between wild‐type and MURC knockout mouse hearts predicted a network of discriminating genes associated with reactive oxygen species. To demonstrate the prediction, we analyzed I/R‐injured mouse hearts. MURC deletion decreased infarct size and preserved heart contraction with reactive oxygen species–related molecule EGR1 (early growth response protein 1) and DDIT4 (DNA‐damage‐inducible transcript 4) suppression in I/R‐injured hearts. Because PC‐corr network inference integrated with a protein–protein interaction network prediction also showed that MURC is involved in the apoptotic pathway, we confirmed the upregulation of STAT3 (signal transducer and activator of transcription 3) and BCL2 (B‐cell lymphoma 2) and the inactivation of caspase 3 in I/R‐injured hearts of MURC knockout mice compared with those of wild‐type mice. STAT3 inhibitor canceled the cardioprotective effect of MURC deletion in I/R‐injured hearts. In cardiomyocytes exposed to hydrogen peroxide, MURC overexpression promoted apoptosis and MURC knockdown inhibited apoptosis. STAT3 inhibitor canceled the antiapoptotic effect of MURC knockdown in cardiomyocytes.

          Conclusions

          Our findings, obtained by prediction from systems network genomic analysis followed by experimental validation, suggested that MURC modulates cardiac I/R injury through the regulation of reactive oxygen species–induced cell death and STAT3‐meditated antiapoptosis. Functional inhibition of MURC may be effective in reducing cardiac I/R injury.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials.

          Many trials have been done to compare primary percutaneous transluminal coronary angioplasty (PTCA) with thrombolytic therapy for acute ST-segment elevation myocardial infarction (AMI). Our aim was to look at the combined results of these trials and to ascertain which reperfusion therapy is most effective. We did a search of published work and identified 23 trials, which together randomly assigned 7739 thrombolytic-eligible patients with ST-segment elevation AMI to primary PTCA (n=3872) or thrombolytic therapy (n=3867). Streptokinase was used in eight trials (n=1837), and fibrin-specific agents in 15 (n=5902). Most patients who received thrombolytic therapy (76%, n=2939) received a fibrin-specific agent. Stents were used in 12 trials, and platelet glycoprotein IIb/IIIa inhibitors were used in eight. We identified short-term and long-term clinical outcomes of death, non-fatal reinfarction, and stroke, and did subgroup analyses to assess the effect of type of thrombolytic agent used and the strategy of emergent hospital transfer for primary PTCA. All analyses were done with and without inclusion of the SHOCK trial data. Primary PTCA was better than thrombolytic therapy at reducing overall short-term death (7% [n=270] vs 9% [360]; p=0.0002), death excluding the SHOCK trial data (5% [199] vs 7% [276]; p=0.0003), non-fatal reinfarction (3% [80] vs 7% [222]; p<0.0001), stroke (1% [30] vs 2% [64]; p=0.0004), and the combined endpoint of death, non-fatal reinfarction, and stroke (8% [253] vs 14% [442]; p<0.0001). The results seen with primary PTCA remained better than those seen with thrombolytic therapy during long-term follow-up, and were independent of both the type of thrombolytic agent used, and whether or not the patient was transferred for primary PTCA. Primary PTCA is more effective than thrombolytic therapy for the treatment of ST-segment elevation AMI.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury.

            Mitochondria play an important role in cell death and cardioprotection. During ischemia, when ATP is progressively depleted, ion pumps cannot function resulting in a rise in calcium (Ca(2+)), which further accelerates ATP depletion. The rise in Ca(2+) during ischemia and reperfusion leads to mitochondrial Ca(2+) accumulation, particularly during reperfusion when oxygen is reintroduced. Reintroduction of oxygen allows generation of ATP; however, damage to the electron transport chain results in increased mitochondrial generation of reactive oxygen species (ROS). Mitochondrial Ca(2+) overload and increased ROS can result in opening of the mitochondrial permeability transition pore, which further compromises cellular energetics. The resultant low ATP and altered ion homeostasis result in rupture of the plasma membrane and cell death. Mitochondria have long been proposed as central players in cell death, since the mitochondria are central to synthesis of both ATP and ROS and since mitochondrial and cytosolic Ca(2+) overload are key components of cell death. Many cardioprotective mechanisms converge on the mitochondria to reduce cell death. Reducing Ca(2+) overload and reducing ROS have both been reported to reduce ischemic injury. Preconditioning activates a number of signaling pathways that reduce Ca(2+) overload and reduce activation of the mitochondrial permeability transition pore. The mitochondrial targets of cardioprotective signals are discussed in detail.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The multiple faces of caveolae.

              Caveolae are a highly abundant but enigmatic feature of mammalian cells. They form remarkably stable membrane domains at the plasma membrane but can also function as carriers in the exocytic and endocytic pathways. The apparently diverse functions of caveolae, including mechanosensing and lipid regulation, might be linked to their ability to respond to plasma membrane changes, a property that is dependent on their specialized lipid composition and biophysical properties.
                Bookmark

                Author and article information

                Contributors
                ogatat@koto.kpu-m.ac.jp
                Journal
                J Am Heart Assoc
                J Am Heart Assoc
                10.1002/(ISSN)2047-9980
                JAH3
                ahaoa
                Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
                John Wiley and Sons Inc. (Hoboken )
                2047-9980
                31 July 2019
                06 August 2019
                : 8
                : 15 ( doiID: 10.1002/jah3.2019.8.issue-15 )
                : e012047
                Affiliations
                [ 1 ] Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
                [ 2 ] Department of Pathology and Cell Regulation Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
                [ 3 ] Department of Molecular Gastroenterology and Hepatology Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
                [ 4 ] Biomedical Cybernetics Group, Biotechnology Center (BIOTEC) Center for Molecular and Cellular Bioengineering (CMCB) Center for Systems Biology Dresden Department of Physics Technische Universität Dresden Dresden Germany
                [ 5 ] Tsinghua Laboratory of Brain and Intelligence Tsinghua University Beijing China
                Author notes
                [*] [* ] Correspondence to: Takehiro Ogata, MD, PhD, Department of Pathology and Cell Regulation and Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‐8566, Japan. E‐mail: ogatat@ 123456koto.kpu-m.ac.jp
                Article
                JAH34322
                10.1161/JAHA.119.012047
                6761664
                31364493
                c3a4c5c1-f0cc-485c-97ef-a3568dde0821
                © 2019 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 18 January 2019
                : 05 July 2019
                Page count
                Figures: 7, Tables: 0, Pages: 16, Words: 9217
                Funding
                Funded by: Japan Society for the Promotion of Science
                Award ID: JP18K07046
                Award ID: JP18K08111
                Funded by: Takeda Science Foundation
                Categories
                Original Research
                Original Research
                Molecular Cardiology
                Custom metadata
                2.0
                jah34322
                06 August 2019
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.6.7 mode:remove_FC converted:06.08.2019

                Cardiovascular Medicine
                apoptosis,caveolae,ischemia reperfusion injury,reactive oxygen species,systems biology,cell signalling/signal transduction,ischemia,basic science research

                Comments

                Comment on this article