32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetics of Isolated Growth Hormone Deficiency

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When a child is not following the normal, predicted growth curve, an evaluation for underlying illnesses and central nervous system abnormalities is required, and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency (GHD). Because Insulin−like Growth Factor−I (IGF−I) plays a pivotal role, GHD could also be considered as a form of IGF−I deficiency (IGFD). Although IGFD can develop at any level of the GH−releasing hormone (GHRH)−GH−IGF axis, a differentiation should be made between GHD (absent to low GH in circulation) and IGFD (normal to high GH in circulation). The main focus of this review is on the GH gene, the various gene alterations and their possible impact on the pituitary gland. However, although transcription factors regulating the pituitary gland development may cause multiple pituitary hormone deficiency, they may present initially as GHD.

          Conflict of interest:None declared.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development.

          Muscarinic acetylcholine receptors (mAChRs), M(1)-M(5), regulate the activity of numerous fundamental central and peripheral functions. The lack of small-molecule ligands that can block or activate specific mAChR subtypes with high selectivity has remained a major obstacle in defining the roles of the individual receptor subtypes and in the development of novel muscarinic drugs. Recently, phenotypic analysis of mutant mouse strains deficient in each of the five mAChR subtypes has led to a wealth of new information regarding the physiological roles of the individual receptor subtypes. Importantly, these studies have identified specific mAChR-regulated pathways as potentially novel targets for the treatment of various important disorders including Alzheimer's disease, schizophrenia, pain, obesity and diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism.

            The gene apparently responsible for a heritable form of murine pituitary-dependent dwarfism (Ames dwarf, df) has been positionally cloned, identifying a novel, tissue-specific, paired-like homeodomain transcription factor, termed Prophet of Pit-1 (Prop-1). The df phenotype results from an apparent failure of initial determination of the Pit-1 lineage required for production of growth hormone, prolactin or thyroid-stimulating hormone, resulting in dysmorphogenesis and failure to activate Pit-1 gene expression. These results imply that a cascade of tissue-specific regulators is responsible for the determination and differentiation of specific cell lineages in pituitary organogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations in PROP1 cause familial combined pituitary hormone deficiency.

              Combined pituitary hormone deficiency (CPHD) in man denotes impaired production of growth hormone (GH) and one or more of the other five anterior pituitary hormones. Mutations of the pituitary transcription factor gene POU1F1 (the human homologue of mouse Pit1) are responsible for deficiencies of GH, prolactin and thyroid stimulating hormone (TSH) in Snell and Jackson dwarf mice and in man, while the production of adrenocorticotrophic hormone (ACTH), luteinizing hormone (LH) and follicle stimulating hormone (FSH) is preserved. The Ames dwarf (df) mouse displays a similar phenotype, and appears to be epistatic to Snell and Jackson dwarfism. We have recently positionally cloned the putative Ames dwarf gene Prop1, which encodes a paired-like homeodomain protein that is expressed specifically in embryonic pituitary and is necessary for Pit1 expression. In this report, we have identified four CPHD families with homozygosity or compound heterozygosity for inactivating mutations of PROP1. These mutations in the human PROP1 gene result in a gene product with reduced DNA-binding and transcriptional activation ability in comparison to the product of the murine df mutation. In contrast to individuals with POU1F1 mutations, those with PROP1 mutations cannot produce LH and FSH at a sufficient level and do not enter puberty spontaneously. Our results identify a major cause of CPHD in humans and suggest a direct or indirect role for PROP1 in the ontogenesis of pituitary gonadotropes, as well as somatotropes, lactotropes and caudomedial thyrotropes.
                Bookmark

                Author and article information

                Journal
                J Clin Res Pediatr Endocrinol
                JCRPE
                Journal of Clinical Research in Pediatric Endocrinology
                Galenos Publishing
                1308-5727
                1308-5735
                June 2010
                1 May 2010
                : 2
                : 2
                : 52-62
                Affiliations
                [1 ] Inselspital, Division of Paediatric Endocrinology, Diabetology&Metabolism, University Children’s Hospital, Bern, Switzerland
                +41 31 632 9552+41 31 632 9550 primus.mullis@ 123456insel.ch Primus E. Mullis, Division of Paediatric Endocrinology, Diabetology&Metabolism, University Children’s Hospital, Inselspital, CH−3010 Bern, Switzerland
                Article
                54
                10.4274/jcrpe.v2i2.52
                3014602
                21274339
                c3a5041f-85bc-445d-8bee-b21cd3bddf2d
                © Journal of Clinical Research in Pediatric Endocrinology, Published by Galenos Publishing.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 April 2010
                : 4 May 2010
                Categories
                Review

                Pediatrics
                human gh−gene cluster,growth,isolated growth hormone deficiency,children
                Pediatrics
                human gh−gene cluster, growth, isolated growth hormone deficiency, children

                Comments

                Comment on this article