23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Probing the Pore of ClC-0 by Substituted Cysteine Accessibility Method Using Methane Thiosulfonate Reagents

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ClC channels are a family of protein molecules containing two ion-permeation pores. Although these transmembrane proteins are important for a variety of physiological functions, their molecular operations are only superficially understood. High-resolution X-ray crystallography techniques have recently revealed the structures of two bacterial ClC channels, but whether vertebrate ClC channel pores are similar to those of bacterial homologues is not clear. To study the pore architecture of the Torpedo ClC-0 channel, we employed the substituted-cysteine-accessibility method (SCAM) and used charged methane thiosulfonate (MTS) compounds to modify the introduced cysteine. Several conclusions were derived from this approach. First, the MTS modification pattern from Y512C to E526C in ClC-0, which corresponds to residues forming helix R in bacterial ClC channels, is indeed consistent with the suggested helical structure. Second, the ClC-0 pore is more accessible to the negatively charged than to the positively charged MTS compound, a pore property that is regulated by the intrinsic electrostatic potential in the pore. Finally, attempts to modify the introduced cysteine at positions intracellular to the selectivity filter did not result in larger MTS modification rates for the open-state channel, suggesting that the fast gate of ClC-0 cannot be located at a position intracellular to the Cl selectivity filter. Thus, the proposal that the glutamate side chain is the fast gate of the channel is applicable to ClC-0, revealing a structural and functional conservation of ClC channels between bacterial and vertebrate species.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.

          1. The extracellular patch clamp method, which first allowed the detection of single channel currents in biological membranes, has been further refined to enable higher current resolution, direct membrane patch potential control, and physical isolation of membrane patches. 2. A description of a convenient method for the fabrication of patch recording pipettes is given together with procedures followed to achieve giga-seals i.e. pipette-membrane seals with resistances of 10(9) - 10(11) omega. 3. The basic patch clamp recording circuit, and designs for improved frequency response are described along with the present limitations in recording the currents from single channels. 4. Procedures for preparation and recording from three representative cell types are given. Some properties of single acetylcholine-activated channels in muscle membrane are described to illustrate the improved current and time resolution achieved with giga-seals. 5. A description is given of the various ways that patches of membrane can be physically isolated from cells. This isolation enables the recording of single channel currents with well-defined solutions on both sides of the membrane. Two types of isolated cell-free patch configurations can be formed: an inside-out patch with its cytoplasmic membrane face exposed to the bath solution, and an outside-out patch with its extracellular membrane face exposed to the bath solution. 6. The application of the method for the recording of ionic currents and internal dialysis of small cells is considered. Single channel resolution can be achieved when recording from whole cells, if the cell diameter is small (less than 20 micrometer). 7. The wide range of cell types amenable to giga-seal formation is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gated access to the pore of a voltage-dependent K+ channel.

            Voltage-activated K+ channels are integral membrane proteins that open or close a K(+)-selective pore in response to changes in transmembrane voltage. Although the S4 region of these channels has been implicated as the voltage sensor, little is known about how opening and closing of the pore is accomplished. We explored the gating process by introducing cysteines at various positions thought to lie in or near the pore of the Shaker K+ channel, and by testing their ability to be chemically modified. We found a series of positions in the S6 transmembrane region that react rapidly with water-soluble thiol reagents in the open state but not the closed state. An open-channel blocker can protect several of these cysteines, showing that they lie in the ion-conducting pore. At two of these sites, Cd2+ ions bind to the cysteines without affecting the energetics of gating; at a third site, Cd2+ binding holds the channel open. The results suggest that these channels open and close by the movement of an intracellular gate, distinct from the selectivity filter, that regulates access to the pore.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acetylcholine receptor channel structure probed in cysteine-substitution mutants.

              In order to understand the structural bases of ion conduction, ion selectivity, and gating in the nicotinic acetylcholine receptor, mutagenesis and covalent modification were combined to identify the amino acid residues that line the channel. The side chains of alternate residues--Ser248, Leu250, Ser252, and Thr254--in M2, a membrane-spanning segment of the alpha subunit, are exposed in the closed channel. Thus alpha 248-254 probably forms a beta strand, and the gate is closer to the cytoplasmic end of the channel than any of these residues. On channel opening, Leu251 is also exposed. These results lead to a revised view of the closed and open channel structures.
                Bookmark

                Author and article information

                Journal
                J Gen Physiol
                The Journal of General Physiology
                The Rockefeller University Press
                0022-1295
                1540-7748
                August 2003
                : 122
                : 2
                : 147-159
                Affiliations
                Center for Neuroscience and Department of Neurology, University of California, Davis, CA 95616
                Author notes

                Address correspondence to Tsung-Yu Chen, Center for Neuroscience, University of California-Davis, 1544 Newton, Court Davis, CA 95616. Fax: (530) 754-5036; email: tycchen@ 123456ucdavis.edu

                Article
                200308845
                10.1085/jgp.200308845
                2229544
                12885876
                c3a6f725-2bf0-42af-bcfe-6db71d684e4a
                Copyright © 2003, The Rockefeller University Press
                History
                : 7 April 2003
                : 7 July 2003
                Categories
                Article

                Anatomy & Physiology
                state dependence,charge selection,scam,mts modification
                Anatomy & Physiology
                state dependence, charge selection, scam, mts modification

                Comments

                Comment on this article