35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chromosomal Inversions between Human and Chimpanzee Lineages Caused by Retrotransposons

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The long interspersed element-1 (LINE-1 or L1) and Alu elements are the most abundant mobile elements comprising 21% and 11% of the human genome, respectively. Since the divergence of human and chimpanzee lineages, these elements have vigorously created chromosomal rearrangements causing genomic difference between humans and chimpanzees by either increasing or decreasing the size of genome. Here, we report an exotic mechanism, retrotransposon recombination-mediated inversion (RRMI), that usually does not alter the amount of genomic material present. Through the comparison of the human and chimpanzee draft genome sequences, we identified 252 inversions whose respective inversion junctions can clearly be characterized. Our results suggest that L1 and Alu elements cause chromosomal inversions by either forming a secondary structure or providing a fragile site for double-strand breaks. The detailed analysis of the inversion breakpoints showed that L1 and Alu elements are responsible for at least 44% of the 252 inversion loci between human and chimpanzee lineages, including 49 RRMI loci. Among them, three RRMI loci inverted exonic regions in known genes, which implicates this mechanism in generating the genomic and phenotypic differences between human and chimpanzee lineages. This study is the first comprehensive analysis of mobile element bases inversion breakpoints between human and chimpanzee lineages, and highlights their role in primate genome evolution.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Recent segmental duplications in the human genome.

          Primate-specific segmental duplications are considered important in human disease and evolution. The inability to distinguish between allelic and duplication sequence overlap has hampered their characterization as well as assembly and annotation of our genome. We developed a method whereby each public sequence is analyzed at the clone level for overrepresentation within a whole-genome shotgun sequence. This test has the ability to detect duplications larger than 15 kilobases irrespective of copy number, location, or high sequence similarity. We mapped 169 large regions flanked by highly similar duplications. Twenty-four of these hot spots of genomic instability have been associated with genetic disease. Our analysis indicates a highly nonrandom chromosomal and genic distribution of recent segmental duplications, with a likely role in expanding protein diversity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            OligoCalc: an online oligonucleotide properties calculator

            We developed OligoCalc as a web-accessible, client-based computational engine for reporting DNA and RNA single-stranded and double-stranded properties, including molecular weight, solution concentration, melting temperature, estimated absorbance coefficients, inter-molecular self-complementarity estimation and intra-molecular hairpin loop formation. OligoCalc has a familiar ‘calculator’ look and feel, making it readily understandable and usable. OligoCalc incorporates three common methods for calculating oligonucleotide-melting temperatures, including a nearest-neighbor thermodynamic model for melting temperature. Since it first came online in 1997, there have been more than 900 000 accesses of OligoCalc from nearly 200 000 distinct hosts, excluding search engines. OligoCalc is available at http://basic.northwestern.edu/biotools/OligoCalc.html, with links to the full source code, usage patterns and statistics at that link as well.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mapping and sequencing of structural variation from eight human genomes.

              Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale--particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation--a standard for genotyping platforms and a prelude to future individual genome sequencing projects.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                29 December 2008
                : 3
                : 12
                : e4047
                Affiliations
                [1 ]Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
                [2 ]Biological Computation and Visualization Center, Louisiana State University, Baton Rouge, Louisiana, United States of America
                [3 ]PBBRC, Interdisciplinary Research Program of Bioinformatics, College of Natural Sciences, Pusan National University, Busan, Korea
                [4 ]Division of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Korea
                Washington University, United States of America
                Author notes

                Conceived and designed the experiments: JL KH MAB. Performed the experiments: JL KH TJM. Analyzed the data: JL KH TJM HSK MAB. Contributed reagents/materials/analysis tools: MAB. Wrote the paper: JL MAB. Performed the computational anaylsis: KH HSK.

                Article
                08-PONE-RA-06652R1
                10.1371/journal.pone.0004047
                2603318
                19112500
                c3b6f4b0-a63c-4e38-9907-20f77ff093d7
                Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 September 2008
                : 22 November 2008
                Page count
                Pages: 9
                Categories
                Research Article
                Evolutionary Biology/Evolutionary and Comparative Genetics
                Genetics and Genomics/Comparative Genomics
                Genetics and Genomics/Genomics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article