35
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Steroidal regulation of uterine resistance to bacterial infection in livestock

      review-article
      1 ,
      Reproductive biology and endocrinology : RB&E
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Postpartum uterine infections reduce reproductive efficiency and have significant animal welfare and economic consequences. Postpartum uterine infections are classified as nonspecific, but Arcanobacterium pyogenes and Escherichia coli are usually associated with them in cattle and sheep. Pyometra is the most common type of uterine infection in dairy cattle, and it is detected almost exclusively in cows with active corpora lutea. Luteal progesterone typically down-regulates uterine immune functions and prevents the uterus from resisting infections. Progesterone also can down-regulate uterine eicosanoid synthesis. This seems to be a critical event in the onset of uterine infections, because eicosanoids can up-regulate immune cell functions in vitro. In addition, exogenous prostaglandin F2 alpha stimulates uterine secretion of prostaglandin F2 alpha and enhances immune functions in vivo. Thus, one may hypothesize that eicosanoids can override the negative effects of progesterone and that the up-regulatory effects of exogenous prostaglandin F2 alpha allow the uterus to resolve an infection, regardless of progesterone concentrations. Based on the results of studies to test that hypothesis, cows, sheep, and pigs in various physiological statuses are resistant to intrauterine infusions of Arcanobacterium pyogenes and Escherichia coli, unless progesterone concentrations are increased. In sheep and pigs, exogenous prostaglandin F2 alpha stimulates uterine production of prostaglandin F2 alpha and allows the uterus to resolve Arcanobacterium pyogenes- Escherichia coli-induced infections, even when progesterone is maintained at luteal phase concentrations before and after treatment. Prostaglandin F2 alpha is a proinflammatory molecule that stimulates the production of various proinflammatory cytokines, and it may enhance uterine production of leukotriene B 4. Proinflammatory cytokines and leukotriene B 4 enhance phagocytosis and lymphocyte functions. Even though there are clear associations among prostaglandin F2 alpha, leukotriene B4, proinflammatory cytokines, phagocytosis, and lymphocyte functions, the mechanism of action of exogenous prostaglandin F2 alpha in overriding the down-regulatory effects of progesterone and resolving uterine infections has not been elucidated. Defining this mechanism should yield new prevention and treatment strategies for uterine infections that do not rely on antibiotic and antimicrobial compounds.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Production of prostaglandin f(2alpha) by cultured bovine endometrial cells in response to tumor necrosis factor alpha: cell type specificity and intracellular mechanisms.

          Tumor necrosis factor alpha (TNFalpha) has been shown to be a potent stimulator of prostaglandin (PG) F(2alpha) secretion in the bovine endometrium. The aims of the present study were to determine the cell types in the endometrium (epithelial or stromal cells) responsible for the secretion of PGF(2alpha) in response to TNFalpha, and the intracellular mechanisms of TNFalpha action. Cultured bovine epithelial and stromal cells were exposed to TNFalpha (0.006-6 nM) or oxytocin (100 nM) for 4 h. TNFalpha resulted in a dose-dependent increase of PGF(2alpha) production in the stromal cells (P < 0.001) but not in the epithelial cells. On the other hand, oxytocin stimulated PGF(2alpha) output in the epithelial cells but not in the stromal cells. When the stromal cells were incubated for 24 h with TNFalpha and inhibitors of phospholipase (PL) C or PLA(2), only PLA(2) inhibitor completely stopped the actions of TNFalpha (P < 0.001). When the stromal cells were exposed to TNFalpha and arachidonic acid, the action of TNFalpha was augmented (P < 0.001). When the stromal cells were incubated for 24 h with a nitric oxide (NO) donor (S-NAP), S-NAP stimulated the PGF(2alpha) production dose-dependently. Although an NO synthase (NOS) inhibitor (L-NAME) reduced TNFalpha-stimulated PGF(2alpha) production, an inhibitor of phosphodiesterase augmented the actions of TNFalpha and S-NAP (P < 0. 05). The overall results indicate that the target of TNFalpha for stimulation of PGF(2alpha) production in cattle is the endometrial stromal cells, and that the actions of TNFalpha are mediated via the activation of PLA(2) and arachidonic acid conversion. Moreover, TNFalpha may exert a stimulatory effect on PGF(2alpha) production via the induction of NOS and the subsequent NO-cGMP formation.
            • Record: found
            • Abstract: found
            • Article: not found

            Association between neutrophil functions and periparturient disorders in cows.

            Neutrophil functions were examined in healthy periparturient dairy cows (n = 46) and in cows with retained placenta and metritis complex (n = 20); metritis (n = 18); or mastitis (n = 13). Blood samples (50 ml) were collected from each cow via jugular vein twice weekly from 1.5 weeks before to 4 weeks after parturition. Neutrophil function was evaluated, using 6 tests: random migration, chemotaxis, ingestion, myeloperoxidase activity (iodination), superoxide production (cytochrome C reduction), and antibody-dependent cell-mediated cytotoxicity. Ability to ingest bacteria and random migration activity of neutrophils from clinically normal cows were high around parturition and increased immediately after parturition, whereas myeloperoxidase activity and antibody-dependent cell-mediated cytotoxicity ability of neutrophils from these cows decreased after parturition. Measurement of neutrophil function in 4 ovariectomized cows revealed significant (P < 0.0005) seasonal changes in results of all 6 functional assays. We observed various defects of neutrophil function in all cows with abnormal conditions after parturition. Before parturition, superoxide production activity by neutrophils from cows with metritis and chemotaxis by neutrophils from cows with mastitis were significantly (P < 0.001 and P < 0.05, respectively) lower, indicating that a defect of neutrophil function may be a predisposing factor in the development of these disorders. In conclusion, the host defense role of neutrophils in periparturient cows was impaired, principally because of a defect in killing capacity, which may increase susceptibility to infections. We also investigated the in vitro effects of arachidonic acid metabolites and recombinant human colony-stimulating factors (rhCSF) on functions of neutrophils from clinically normal and postparturient cows with abnormalities, including retained placenta, metritis, or mastitis (n = 5/group). Each abnormal cow was matched for postpartum period with a clinically normal cow. Neutrophils from individual cows were preincubated with arachidonic acid metabolites (prostaglandin F2 alpha, 10(-7) M; prostaglandin E2, 10(-6) M; leukotriene B4, 10(-8) M; and lipoxin B, 10(-8) M) and rhCSF (rh-granulocyte-CSF, 1,000 or 6,000 U/ml; rh-granulocyte-macrophage-CSF, 5 or 15 ng/ml) in a 37 C water bath for 30 minutes before submitting them to function assays. There was no response by neutrophils from either clinically normal or abnormal postparturient cows to treatment with either arachidonic acid metabolites or rhCSF in any of the 6 functional assays. However, preincubation of neutrophils alone in a 37 C water bath for 30 minutes resulted in some alteration of neutrophil function.(ABSTRACT TRUNCATED AT 400 WORDS)
              • Record: found
              • Abstract: found
              • Article: not found

              Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle?

              To determine the physiological significance of tumor necrosis factor alpha (TNFalpha) in the regulation of luteolytic prostaglandin (PG) F(2alpha) release by the bovine endometrium, the effect of TNF-alpha on PGF(2alpha) output by the endometrial tissues in vitro was investigated and compared with the effect of oxytocin (OT). Furthermore, the presence of specific receptors for TNFalpha in the bovine endometrium during the estrous cycle was determined. Endometrial slices (20-30 mg) taken from six stages of the estrous cycle (estrus: Day 0; early I: Days 2-3; early II: Days 5-6; mid-: Days 8-12; late: Days 15-17; and follicular: Days 19-21), as determined by macroscopic examination of the ovaries and uterus, were exposed to TNFalpha (0.06-6 nM) and/or OT (100 nM). OT stimulated PGF(2alpha) output at the follicular stage and at estrus (P < 0.001), but not at the late luteal stage. On the other hand, the stimulatory effects of TNFalpha on PGF(2alpha) output were observed not only at the follicular stage but also at the late luteal stage (P < 0.001). When the endometrial tissues at late luteal stage were simultaneously exposed to TNFalpha (0.6 nM) and OT (100 nM), the stimulatory effect on PGF(2alpha) output was higher than the effect of TNFalpha or OT alone (P < 0.05). Specific binding of TNFalpha to the bovine endometrial membranes was observed throughout the estrous cycle. The concentration of TNF-alpha receptor at the early I luteal stage was less than the concentrations at other luteal stages (P < 0.01). The dissociation constant (K(d)) values of the endometrial membranes were constant during the estrous cycle. The overall results lead us to hypothesize that TNFalpha may be a trigger for the output of PGF(2alpha) by the endometrium at the initiation of luteolysis in cattle.

                Author and article information

                Journal
                Reprod Biol Endocrinol
                Reproductive biology and endocrinology : RB&E
                BioMed Central (London )
                1477-7827
                2003
                28 November 2003
                : 1
                : 117
                Affiliations
                [1 ]USDA, Agricultural Research Service, U.S. Sheep Experiment Station, Dubois, Idaho, USA
                Article
                1477-7827-1-117
                10.1186/1477-7827-1-117
                305333
                14641941
                c3c516ea-77e8-4a90-adf3-630178218c5e
                Copyright © 2003 Lewis; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 8 July 2003
                : 28 November 2003
                Categories
                Review

                Human biology
                Human biology

                Comments

                Comment on this article

                Related Documents Log