12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hepatitis C: From inflammatory pathogenesis to anti-inflammatory/hepatoprotective therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatitis C virus (HCV) infection commonly causes progressive liver diseases that deteriorate from chronic inflammation to fibrosis, cirrhosis and even to hepatocellular carcinoma. A long-term, persistent and uncontrolled inflammatory response is a hallmark of these diseases and further leads to hepatic injury and more severe disease progression. The levels of inflammatory cytokines and chemokines change with the states of infection and treatment, and therefore, they may serve as candidate biomarkers for disease progression and therapeutic effects. The mechanisms of HCV-induced inflammation involve classic pathogen pattern recognition, inflammasome activation, intrahepatic inflammatory cascade response, and oxidative and endoplasmic reticulum stress. Direct-acting antivirals (DAAs) are the first-choice therapy for effectively eliminating HCV, but DAAs alone are not sufficient to block the uncontrolled inflammation and severe liver injury in HCV-infected individuals. Some patients who achieve a sustained virologic response after DAA therapy are still at a long-term risk for progression to liver cirrhosis and hepatocellular carcinoma. Therefore, coupling with anti-inflammatory/hepatoprotective agents with anti-HCV effects is a promising therapeutic regimen for these patients during or after treatment with DAAs. In this review, we discuss the relationship between inflammatory mediators and HCV infection, summarize the mechanisms of HCV-induced inflammation, and describe the potential roles of anti-inflammatory/hepatoprotective drugs with anti-HCV activity in the treatment of advanced HCV infection.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Targeting the "cytokine storm" for therapeutic benefit.

          Inflammation is the body's first line of defense against infection or injury, responding to challenges by activating innate and adaptive responses. Microbes have evolved a diverse range of strategies to avoid triggering inflammatory responses. However, some pathogens, such as the influenza virus and the Gram-negative bacterium Francisella tularensis, do trigger life-threatening "cytokine storms" in the host which can result in significant pathology and ultimately death. For these diseases, it has been proposed that downregulating inflammatory immune responses may improve outcome. We review some of the current candidates for treatment of cytokine storms which may prove useful in the clinic in the future and compare them to more traditional therapeutic candidates that target the pathogen rather than the host response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years

            Silymarin is the extract of Silybum marianum, or milk thistle, and its major active compound is silybin, which has a remarkable biological effect. It is used in different liver disorders, particularly chronic liver diseases, cirrhosis and hepatocellular carcinoma, because of its antioxidant, anti-inflammatory and antifibrotic power. Indeed, the anti-oxidant and anti-inflammatory effect of silymarin is oriented towards the reduction of virus-related liver damages through inflammatory cascade softening and immune system modulation. It also has a direct antiviral effect associated with its intravenous administration in hepatitis C virus infection. With respect to alcohol abuse, silymarin is able to increase cellular vitality and to reduce both lipid peroxidation and cellular necrosis. Furthermore, silymarin/silybin use has important biological effects in non-alcoholic fatty liver disease. These substances antagonize the progression of non-alcoholic fatty liver disease, by intervening in various therapeutic targets: oxidative stress, insulin resistance, liver fat accumulation and mitochondrial dysfunction. Silymarin is also used in liver cirrhosis and hepatocellular carcinoma that represent common end stages of different hepatopathies by modulating different molecular patterns. Therefore, the aim of this review is to examine scientific studies concerning the effects derived from silymarin/silybin use in chronic liver diseases, cirrhosis and hepatocellular carcinoma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Innate and adaptive immune responses in HCV infections.

              Hepatitis C virus has been identified a quarter of a decade ago as a leading cause of chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma. Only a minority of patients can clear the virus spontaneously during acute infection. Elimination of HCV during acute infection correlates with a rapid induction of innate, especially interferon (IFN) induced genes, and a delayed induction of adaptive immune responses. However, the majority of patients is unable to clear the virus and develops viral persistence in face of an ongoing innate and adaptive immune response. The virus has developed several strategies to escape these immune responses. For example, to escape innate immunity, the HCV NS3/4A protease can efficiently cleave and inactivate two important signalling molecules in the sensory pathways that react to HCV pathogen-associated molecular patterns (PAMPs) to induce IFNs, i.e., the mitochondrial anti-viral signalling protein (MAVS) and the Toll-IL-1 receptor-domain-containing adaptor-inducing IFN-β (TRIF). Despite these escape mechanisms, IFN-stimulated genes (ISGs) are induced in a large proportion of patients with chronic infection. Of note, chronically HCV infected patients with constitutive IFN-stimulated gene (ISG) expression have a poor response to treatment with pegylated IFN-α (PegIFN-α) and ribavirin. The mechanisms that protect HCV from IFN-mediated innate immune reactions are not entirely understood, but might involve blockade of ISG protein translation at the ribosome, localization of viral replication to cell compartments that are not accessible to anti-viral IFN-stimulated effector systems, or direct antagonism of effector systems by viral proteins. Escape from adaptive immune responses can be achieved by emergence of viral escape mutations that avoid recognition by antibodies and T cells. In addition, chronic infection is characterized by the presence of functionally and phenotypically altered NK and T cell responses that are unable to clear the virus but most likely contribute to the ongoing liver disease. In this review, we will summarize current knowledge about the role of innate and adaptive immune responses in determining the outcome of HCV infection.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Gastroenterol
                World J. Gastroenterol
                WJG
                World Journal of Gastroenterology
                Baishideng Publishing Group Inc
                1007-9327
                2219-2840
                21 December 2018
                21 December 2018
                : 24
                : 47
                : 5297-5311
                Affiliations
                Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
                Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
                Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
                Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
                Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. pengzonggen@ 123456imb.pumc.edu.cn
                Author notes

                Author contributions: All the authors contributed to the search and analysis of the literature and to the writing of the paper.

                Supported by CAMS Innovation Fund for Medical Sciences, No. 2017-I2M-3-012; National Natural Science Foundation of China, No. 81773788 and 81621064; and National Mega-Project for “R&D for Innovative Drugs”, Ministry of Science and Technology, China, No. 2018ZX09711001-003-010.

                Corresponding author to: Zong-Gen Peng, PhD, Professor, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing 100050, China. pengzonggen@ 123456imb.pumc.edu.cn

                Telephone: +86-10-63166129 Fax: +86-10-63017302

                Article
                jWJG.v24.i47.pg5297
                10.3748/wjg.v24.i47.5297
                6305530
                30598575
                c3c6a074-d634-407c-b847-4da77d7edbc3
                ©The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

                History
                : 19 October 2018
                : 27 November 2018
                : 30 November 2018
                Categories
                Review

                hepatitis c virus infection,liver disease,inflammatory pathogenesis,anti-inflammatory and hepatoprotective therapy

                Comments

                Comment on this article