73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Eye-like ocelloids are built from different endosymbiotically acquired components.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multicellularity is often considered a prerequisite for morphological complexity, as seen in the camera-type eyes found in several groups of animals. A notable exception exists in single-celled eukaryotes called dinoflagellates, some of which have an eye-like 'ocelloid' consisting of subcellular analogues to a cornea, lens, iris, and retina. These planktonic cells are uncultivated and rarely encountered in environmental samples, obscuring the function and evolutionary origin of the ocelloid. Here we show, using a combination of electron microscopy, tomography, isolated-organelle genomics, and single-cell genomics, that ocelloids are built from pre-existing organelles, including a cornea-like layer made of mitochondria and a retinal body made of anastomosing plastids. We find that the retinal body forms the central core of a network of peridinin-type plastids, which in dinoflagellates and their relatives originated through an ancient endosymbiosis with a red alga. As such, the ocelloid is a chimaeric structure, incorporating organelles with different endosymbiotic histories. The anatomical complexity of single-celled organisms may be limited by the components available for differentiation, but the ocelloid shows that pre-existing organelles can be assembled into a structure so complex that it was initially mistaken for a multicellular eye. Although mitochondria and plastids are acknowledged chiefly for their metabolic roles, they can also be building blocks for greater structural complexity.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          The number, speed, and impact of plastid endosymbioses in eukaryotic evolution.

          Plastids (chloroplasts) have long been recognized to have originated by endosymbiosis of a cyanobacterium, but their subsequent evolutionary history has proved complex because they have also moved between eukaryotes during additional rounds of secondary and tertiary endosymbioses. Much of this history has been revealed by genomic analyses, but some debates remain unresolved, in particular those relating to secondary red plastids of the chromalveolates, especially cryptomonads. Here, I examine several fundamental questions and assumptions about endosymbiosis and plastid evolution, including the number of endosymbiotic events needed to explain plastid diversity, whether the genetic contribution of the endosymbionts to the host genome goes far beyond plastid-targeted genes, and whether organelle origins are best viewed as a singular transition involving one symbiont or as a gradual transition involving a long line of transient food/symbionts. I also discuss a possible link between transporters and the evolution of protein targeting in organelle integration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic sequencing of uncultured microorganisms from single cells.

            Sequencing DNA from single cells has opened new windows onto the microbial world. It is becoming routine to sequence bacterial species directly from environmental samples or clinical specimens without the need to develop cultivation methods. Recent technical improvements often allow nearly complete genome assembly from these otherwise inaccessible species. New bioinformatics methods are also improving genome assembly from single cells. The use of single-cell sequencing in combination with metagenomic analysis is also emerging as a powerful new strategy to analyse bacterial communities. Here, the technical developments that have enabled single-cell sequencing, as well as some of the most exciting applications of this approach from the past few years, are reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements.

              Dinoflagellates are a trophically diverse group of protists with photosynthetic and non-photosynthetic members that appears to incorporate and lose endosymbionts relatively easily. To trace the gain and loss of plastids in dinoflagellates, we have sequenced the nuclear small subunit rRNA gene of 28 photosynthetic and four non-photosynthetic species, and produced phylogenetic trees with a total of 81 dinoflagellate sequences. Patterns of plastid gain, loss, and replacement were plotted onto this phylogeny. With the exception of the apparently early-diverging Syndiniales and Noctilucales, all non-photosynthetic dinoflagellates are very likely to have had photosynthetic ancestors with peridinin-containing plastids. The same is true for all dinoflagellates with plastids other than the peridinin-containing plastid: their ancestors have replaced one type of plastid for another, in some cases most likely through a non-photosynthetic intermediate. Eight independent instances of plastid loss and three of replacement can be inferred from existing data, but as more non-photosynthetic lineages are characterized these numbers will surely grow.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                1476-4687
                0028-0836
                Jul 9 2015
                : 523
                : 7559
                Affiliations
                [1 ] Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
                [2 ] 1] Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
                [3 ] Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
                [4 ] 1] Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan [2] Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
                [5 ] 1] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [4] Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada.
                [6 ] 1] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada.
                [7 ] 1] Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada.
                Article
                nature14593
                10.1038/nature14593
                26131935
                c3cb2e0f-591a-43f1-a2ea-a88ac6b2ae2a
                History

                Comments

                Comment on this article