30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Renal Perfusion Index Reflects Cardiac Systolic Function in Chronic Cardio-Renal Syndrome

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cardiac dysfunction can modify renal perfusion, which is crucial to maintain sufficient kidney tissue oxygenation. Renal cortex perfusion assessed by dynamic ultrasound method is related both to renal function and cardiac hemodynamics. The aim of the study was to test the hypothesis that Renal Perfusion Index (RPI) can more closely reflect cardiac hemodynamics and differentiate etiology of chronic cardio-renal syndrome.

          Material/Methods

          Twenty-four patients with hypertension and chronic kidney disease (CKD) at 2–4 stage (12 with hypertensive nephropathy and 12 with CKD prior to hypertension) were enrolled in the study. Blood tests, 24-h ABPM, echocardiography, and ultrasonography with estimation of Total renal Cortical Perfusion intensity and Renal Perfusion Index (RPI) were performed.

          Results

          In the group of all patients, RPI correlated with left ventricular stoke volume (LVSV), and cardiac index, but not with markers of renal function. In multiple stepwise regression analysis CKD-EPI (Cys-Cr) (b=−0.360), LVSV (b=0.924) and MAP (b=0.376) together independently influenced RPI (R 2=0.74; p<0.0001). RPI<0.567 allowed for the identification of patients with chronic cardio-renal syndrome with sensitivity of 41.7% and specificity of 83.3%.

          Conclusions

          Renal perfusion index relates more strongly to cardiac output than to renal function, and could be helpful in recognizing chronic cardio-renal syndrome. Applicability of RPI in diagnosing early abnormalities in the cardio-renal axis requires further investigation.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings.

          To determine the accuracy of echocardiographic left ventricular (LV) dimension and mass measurements for detection and quantification of LV hypertrophy, results of blindly read antemortem echocardiograms were compared with LV mass measurements made at necropsy in 55 patients. LV mass was calculated using M-mode LV measurements by Penn and American Society of Echocardiography (ASE) conventions and cube function and volume correction formulas in 52 patients. Penn-cube LV mass correlated closely with necropsy LV mass (r = 0.92, p less than 0.001) and overestimated it by only 6%; sensitivity in 18 patients with LV hypertrophy (necropsy LV mass more than 215 g) was 100% (18 of 18 patients) and specificity was 86% (29 of 34 patients). ASE-cube LV mass correlated similarly to necropsy LV mass (r = 0.90, p less than 0.001), but systematically overestimated it (by a mean of 25%); the overestimation could be corrected by the equation: LV mass = 0.80 (ASE-cube LV mass) + 0.6 g. Use of ASE measurements in the volume correction formula systematically underestimated necropsy LV mass (by a mean of 30%). In a subset of 9 patients, 3 of whom had technically inadequate M-mode echocardiograms, 2-dimensional echocardiographic (echo) LV mass by 2 methods was also significantly related to necropsy LV mass (r = 0.68, p less than 0.05 and r = 0.82, p less than 0.01). Among other indexes of LV anatomy, only measurement of myocardial cross-sectional area was acceptably accurate for quantitation of LV mass (r = 0.80, p less than 0.001) or diagnosis of LV hypertrophy (sensitivity = 72%, specificity = 94%).(ABSTRACT TRUNCATED AT 250 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Renal microvascular dysfunction, hypertension and CKD progression.

            Despite apparent blood pressure (BP) control and renin-angiotensin system (RAS) blockade, the chronic kidney disease (CKD) outcomes have been suboptimal. Accordingly, this review is addressed to renal microvascular and autoregulatory impairments that underlie the enhanced dynamic glomerular BP transmission in CKD progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathophysiology of the cardiorenal syndromes: executive summary from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI).

              Cardiorenal syndromes (CRS) have been recently classified into five distinct entities, each with different major pathophysiologic mechanisms. CRS type 1 most commonly occurs in the setting of acutely decompensated heart failure where approximately 25% of patients develop a rise in serum creatinine and a reduction of urine output after the first several doses of intravenous diuretics. Altered cardiac and renal hemodynamics are believed to be the most important determinants of CRS type 1. CRS type 2 is the hastened progression of chronic kidney disease (CKD) in the setting of chronic heart failure. Accelerated renal cell apoptosis and replacement fibrosis is considered to be the dominant mechanism. CRS type 3 is acutely decompensated heart failure after acute kidney injury from inflammatory, toxic, or ischemic insults. This syndrome is precipitated by salt and water overload, acute uremic myocyte dysfunction, and neurohormonal dysregulation. CRS type 4 is manifested by the acceleration of the progression of chronic heart failure in the setting of CKD. Cardiac myocyte dysfunction and fibrosis, so-called 'CKD cardiomyopathy', is believed to be the predominant pathophysiologic mechanism. Type 5 CRS is simultaneous acute cardiac and renal injury in the setting of an overwhelming systemic insult such as sepsis. In this scenario, the predominant pathophysiological disturbance is microcirculatory dysfunction as a result of acutely abnormal immune cell signaling, catecholamine cellular toxicity, and enzymatic activation which result in simultaneous organ injury often extending beyond both the heart and the kidneys. This paper will summarize these and other key findings from an international consensus conference on the spectrum of pathophysiologic mechanisms at work in the CRS.
                Bookmark

                Author and article information

                Journal
                Med Sci Monit
                Med. Sci. Monit
                Medical Science Monitor
                Medical Science Monitor : International Medical Journal of Experimental and Clinical Research
                International Scientific Literature, Inc.
                1234-1010
                1643-3750
                2015
                17 April 2015
                : 21
                : 1089-1096
                Affiliations
                [1 ]Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine, Warsaw, Poland
                [2 ]Department of Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
                Author notes
                Corresponding Author: Arkadiusz Lubas, e-mail: alubas@ 123456wim.mil.pl
                [A]

                Study Design

                [B]

                Data Collection

                [C]

                Statistical Analysis

                [D]

                Data Interpretation

                [E]

                Manuscript Preparation

                [F]

                Literature Search

                [G]

                Funds Collection

                Article
                892630
                10.12659/MSM.892630
                4412086
                25881555
                c3d08f24-c8a6-4ede-8772-cbd5d7963ea4
                © Med Sci Monit, 2015

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License

                History
                : 30 September 2014
                : 14 December 2014
                Categories
                Diagnostic Techniques

                cardio-renal syndrome,hypertension, renal,perfusion imaging,renal insufficiency, chronic

                Comments

                Comment on this article