8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HO<sub>x</sub> radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling

      , , , , , , ,
      Atmospheric Measurement Techniques
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> Oxidation flow reactors (OFRs) using OH produced from low-pressure Hg lamps at 254 nm (OFR254) or both 185 and 254 nm (OFR185) are commonly used in atmospheric chemistry and other fields. OFR254 requires the addition of externally formed O<sub>3</sub> since OH is formed from O<sub>3</sub> photolysis, while OFR185 does not since O<sub>2</sub> can be photolyzed to produce O<sub>3</sub>, and OH can also be formed from H<sub>2</sub>O photolysis. In this study, we use a plug-flow kinetic model to investigate OFR properties under a very wide range of conditions applicable to both field and laboratory studies. We show that the radical chemistry in OFRs can be characterized as a function of UV light intensity, H<sub>2</sub>O concentration, and total external OH reactivity (OHR<sub>ext</sub>, e.g., from volatile organic compounds (VOCs), NO<sub>x</sub>, and SO<sub>2</sub>). OH exposure is decreased by added external OH reactivity. OFR185 is especially sensitive to this effect at low UV intensity due to low primary OH production. OFR254 can be more resilient against OH suppression at high injected O<sub>3</sub> (e.g., 70 ppm), as a larger primary OH source from O<sub>3</sub>, as well as enhanced recycling of HO<sub>2</sub> to OH, make external perturbations to the radical chemistry less significant. However if the external OH reactivity in OFR254 is much larger than OH reactivity from injected O<sub>3</sub>, OH suppression can reach 2 orders of magnitude. For a typical input of 7 ppm O<sub>3</sub> (OHR<sub>O<sub>3</sub></sub> = 10 s<sup>−1</sup>), 10-fold OH suppression is observed at OHR<sub>ext</sub> ~ 100 s<sup>−1</sup>, which is similar or lower than used in many laboratory studies. The range of modeled OH suppression for literature experiments is consistent with the measured values except for those with isoprene. The finding on OH suppression may have important implications for the interpretation of past laboratory studies, as applying OH<sub>exp</sub> measurements acquired under different conditions could lead to over a 1-order-of-magnitude error in the estimated OH<sub>exp</sub>. The uncertainties of key model outputs due to uncertainty in all rate constants and absorption cross-sections in the model are within ±25 % for OH exposure and within ±60 % for other parameters. These uncertainties are small relative to the dynamic range of outputs. Uncertainty analysis shows that most of the uncertainty is contributed by photolysis rates of O<sub>3</sub>, O<sub>2</sub>, and H<sub>2</sub>O and reactions of OH and HO<sub>2</sub> with themselves or with some abundant species, i.e., O<sub>3</sub> and H<sub>2</sub>O<sub>2</sub>. OH<sub>exp</sub> calculated from direct integration and estimated from SO<sub>2</sub> decay in the model with laminar and measured residence time distributions (RTDs) are generally within a factor of 2 from the plug-flow OH<sub>exp</sub>. However, in the models with RTDs, OH<sub>exp</sub> estimated from SO<sub>2</sub> is systematically lower than directly integrated OH<sub>exp</sub> in the case of significant SO<sub>2</sub> consumption. We thus recommended using OH<sub>exp</sub> estimated from the decay of the species under study when possible, to obtain the most appropriate information on photochemical aging in the OFR. Using HO<sub>x</sub>-recycling vs. destructive external OH reactivity only leads to small changes in OH<sub>exp</sub> under most conditions. Changing the identity (rate constant) of external OH reactants can result in substantial changes in OH<sub>exp</sub> due to different reductions in OH suppression as the reactant is consumed. We also report two equations for estimating OH exposure in OFR254. We find that the equation estimating OH<sub>exp</sub> from measured O<sub>3</sub> consumption performs better than an alternative equation that does not use it, and thus recommend measuring both input and output O<sub>3</sub> concentrations in OFR254 experiments. This study contributes to establishing a firm and systematic understanding of the gas-phase HO<sub>x</sub> and O<sub>x</sub> chemistry in these reactors, and enables better experiment planning and interpretation as well as improved design of future reactors.</p>

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          Photochemical processes for water treatment

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Advanced oxidation processes (AOP) for water purification and recovery

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected

                Bookmark

                Author and article information

                Journal
                Atmospheric Measurement Techniques
                Atmos. Meas. Tech.
                Copernicus GmbH
                1867-8548
                2015
                November 20 2015
                : 8
                : 11
                : 4863-4890
                Article
                10.5194/amt-8-4863-2015
                c3d2b43e-5967-416c-92e0-d2460fc149a6
                © 2015

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article