12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Convergent patterns in the evolution of mealybug symbioses involving different intrabacterial symbionts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mealybugs (Insecta: Hemiptera: Pseudococcidae) maintain obligatory relationships with bacterial symbionts, which provide essential nutrients to their insect hosts. Most pseudococcinae mealybugs harbor a unique symbiosis setup with enlarged betaproteobacterial symbionts (‘ Candidatus Tremblaya princeps'), which themselves contain gammaproteobacterial symbionts. Here we investigated the symbiosis of the manna mealybug, Trabutina mannipara, using a metagenomic approach. Phylogenetic analyses revealed that the intrabacterial symbiont of T. mannipara represents a novel lineage within the Gammaproteobacteria, for which we propose the tentative name ‘ Candidatus Trabutinella endobia'. Combining our results with previous data available for the nested symbiosis of the citrus mealybug Planococcus citri, we show that synthesis of essential amino acids and vitamins and translation-related functions partition between the symbiotic partners in a highly similar manner in the two systems, despite the distinct evolutionary origin of the intrabacterial symbionts. Bacterial genes found in both mealybug genomes and complementing missing functions in both symbioses were likely integrated in ancestral mealybugs before T. mannipara and P. citri diversified. The high level of correspondence between the two mealybug systems and their highly intertwined metabolic pathways are unprecedented. Our work contributes to a better understanding of the only known intracellular symbiosis between two bacteria and suggests that the evolution of this unique symbiosis included the replacement of intrabacterial symbionts in ancestral mealybugs.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          ISfinder: the reference centre for bacterial insertion sequences

          ISfinder () is a dedicated database for bacterial insertion sequences (ISs). It has superseded the Stanford reference center. One of its functions is to assign IS names and to provide a focal point for a coherent nomenclature. It is also the repository for ISs. Each new IS is indexed together with information such as its DNA sequence and open reading frames or potential coding sequences, the sequence of the ends of the element and target sites, its origin and distribution together with a bibliography where available. Another objective is to continuously monitor ISs to provide updated comprehensive groupings or families and to provide some insight into their phylogenies. The site also contains extensive background information on ISs and transposons in general. Online tools are gradually being added. At present an online Blast facility against the entire bank is available. But additional features will include alignment capability, PsiBLAST and HMM profiles. ISfinder also includes a section on bacterial genomes and is involved in annotating the IS content of these genomes. Finally, this database is currently recommended by several microbiology journals for registration of new IS elements before their publication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 160-kilobase genome of the bacterial endosymbiont Carsonella.

            Previous studies have suggested that the minimal cellular genome could be as small as 400 kilobases. Here, we report the complete genome sequence of the psyllid symbiont Carsonella ruddii, which consists of a circular chromosome of 159,662 base pairs, averaging 16.5% GC content. It is by far the smallest and most AT-rich bacterial genome yet characterized. The genome has a high coding density (97%) with many overlapping genes and reduced gene length. Genes for translation and amino acid biosynthesis are relatively well represented, but numerous genes considered essential for life are missing, suggesting that Carsonella may have achieved organelle-like status.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases

              The MetaCyc database (MetaCyc.org) is a comprehensive and freely accessible resource for metabolic pathways and enzymes from all domains of life. The pathways in MetaCyc are experimentally determined, small-molecule metabolic pathways and are curated from the primary scientific literature. With more than 1400 pathways, MetaCyc is the largest collection of metabolic pathways currently available. Pathways reactions are linked to one or more well-characterized enzymes, and both pathways and enzymes are annotated with reviews, evidence codes, and literature citations. BioCyc (BioCyc.org) is a collection of more than 500 organism-specific Pathway/Genome Databases (PGDBs). Each BioCyc PGDB contains the full genome and predicted metabolic network of one organism. The network, which is predicted by the Pathway Tools software using MetaCyc as a reference, consists of metabolites, enzymes, reactions and metabolic pathways. BioCyc PGDBs also contain additional features, such as predicted operons, transport systems, and pathway hole-fillers. The BioCyc Web site offers several tools for the analysis of the PGDBs, including Omics Viewers that enable visualization of omics datasets on two different genome-scale diagrams and tools for comparative analysis. The BioCyc PGDBs generated by SRI are offered for adoption by any party interested in curation of metabolic, regulatory, and genome-related information about an organism.
                Bookmark

                Author and article information

                Journal
                ISME J
                ISME J
                The ISME Journal
                Nature Publishing Group
                1751-7362
                1751-7370
                March 2017
                16 December 2016
                1 March 2017
                : 11
                : 3
                : 715-726
                Affiliations
                [1 ]Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna , Vienna, Austria
                [2 ]Department of Limnology and Bio-Oceanography, University of Vienna , Vienna, Austria
                [3 ]Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem , Jerusalem, Israel
                Author notes
                [* ]Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna , Althanstrasse 14, Vienna 1090, Austria. E-mail: szabo@ 123456microbial-ecology.net or horn@ 123456microbial-ecology.net
                [4]

                Current address: US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA, USA.

                [5]

                Current address: Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.

                [6]

                Current address: Department of Biology, University of North Carolina, Chapel Hill, NC, USA.

                Article
                ismej2016148
                10.1038/ismej.2016.148
                5322300
                27983719
                c3e31aae-3145-45c1-a50b-68d78f282bd7
                Copyright © 2017 International Society for Microbial Ecology

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 29 April 2016
                : 10 September 2016
                : 13 September 2016
                Categories
                Original Article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article