15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      New angiotensins

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulation of a large body of evidence during the past two decades testifies to the complexity of the renin–angiotensin system (RAS). The incorporation of novel enzymatic pathways, resulting peptides, and their corresponding receptors into the biochemical cascade of the RAS provides a better understanding of its role in the regulation of cardiovascular and renal function. Hence, in recent years, it became apparent that the balance between the two opposing effector peptides, angiotensin II and angiotensin-(1-7), may have a pivotal role in determining different cardiovascular pathophysiologies. Furthermore, our recent studies provide evidence for the functional relevance of a newly discovered rat peptide, containing two additional amino acid residues compared to angiotensin I, first defined as proangiotensin-12 [angiotensin-(1-12)]. This review focuses on angiotensin-(1-7) and its important contribution to cardiovascular function and growth, while introducing angiotensin-(1-12) as a potential novel angiotensin precursor.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7).

          Cardiac remodeling, which typically results from chronic hypertension or following an acute myocardial infarction, is a major risk factor for the development of heart failure and, ultimately, death. The renin-angiotensin system (RAS) has previously been established to play an important role in the progression of cardiac remodeling, and inhibition of a hyperactive RAS provides protection from cardiac remodeling and subsequent heart failure. Our previous studies have demonstrated that overexpression of angiotensin-converting enzyme 2 (ACE2) prevents cardiac remodeling and hypertrophy during chronic infusion of angiotensin II (ANG II). This, coupled with the knowledge that ACE2 is a key enzyme in the formation of ANG-(1-7), led us to hypothesize that chronic infusion of ANG-(1-7) would prevent cardiac remodeling induced by chronic infusion of ANG II. Infusion of ANG II into adult Sprague-Dawley rats resulted in significantly increased blood pressure, myocyte hypertrophy, and midmyocardial interstitial fibrosis. Coinfusion of ANG-(1-7) resulted in significant attenuations of myocyte hypertrophy and interstitial fibrosis, without significant effects on blood pressure. In a subgroup of animals also administered [d-Ala(7)]-ANG-(1-7) (A779), an antagonist to the reported receptor for ANG-(1-7), there was a tendency to attenuate the antiremodeling effects of ANG-(1-7). Chronic infusion of ANG II, with or without coinfusion of ANG-(1-7), had no effect on ANG II type 1 or type 2 receptor binding in cardiac tissue. Together, these findings indicate an antiremodeling role for ANG-(1-7) in cardiac tissue, which is not mediated through modulation of blood pressure or altered cardiac angiotensin receptor populations and may be at least partially mediated through an ANG-(1-7) receptor.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiotensin-(1-7): cardioprotective effect in myocardial ischemia/reperfusion.

            In this study we evaluate the effects of angiotensin-(1-7) on reperfusion arrhythmias in isolated rat hearts. Rat hearts were perfused according to Langendorff technique and maintained in heated (37+/-1 degrees C) and continuously gassed (95% O(2)/5% CO(2)) Krebs-Ringer solution at constant pressure (65 mm Hg). The electrical activity was recorded with an ECG (bipolar). Local ischemia was induced by coronary ligation for 15 minutes. After ischemia, hearts were reperfused for 30 minutes. Cardiac arrhythmias were defined as the presence of ventricular tachycardia and/or ventricular fibrillation after the ligation of the coronary artery was released. Angiotensin II (0.20 nmol/L, n=10) produced a significant enhancement of reperfusion arrhythmias. On the other hand, Ang-(1-7) presented in the perfusion solution (0.22 nmol/L, n=11) reduced incidence and duration of arrhythmias. The antiarrhythmogenic effects of Ang-(1-7) was blocked by the selective Ang-(1-7) antagonist A-779 (2 nmol/L, n=9) and by indomethacin pretreatment (5 mg/kg IP, n=8) but not by the bradykinin B(2) antagonist HOE 140 (100 nmol/L, n=10) or by L-NAME pretreatment (30 mg/kg IP, n=8). These results suggest that the antiarrhythmogenic effect of low concentrations of Ang-(1-7) is mediated by a specific receptor and that release of endogenous prostaglandins.by Ang-(1-7) contributes to the alleviation of reversible and/or irreversible ischemia-reperfusion injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impairment of in vitro and in vivo heart function in angiotensin-(1-7) receptor MAS knockout mice.

              In this study we investigated the effects of the genetic deletion of the angiotensin (Ang)-(1-7) receptor Mas on heart function. Localization of Mas in the mouse heart was evaluated by binding of rhodamine-labeled Ang-(1-7). Cardiac function was examined using isolated heart preparations. Echocardiography was used to confirm the results obtained with isolated heart studies. To elucidate the possible mechanisms involved in the cardiac phenotype observed in Mas(-/-) mice, whole-cell calcium currents in cardiomyocytes and the expression of collagen types I, III, and VI and fibronectin were analyzed. Ang-(1-7) binding showed that Mas is localized in cardiomyocytes of the mouse heart. Isolated heart techniques revealed that Mas-deficient mice present a lower systolic tension (average: 1.4+/-0.09 versus 2.1+/-0.03 g in Mas(+/+) mice), +/-dT/dt, and heart rate. A significantly higher coronary vessel resistance was also observed in Mas-deficient mice. Echocardiography revealed that hearts of Mas-deficient mice showed a significantly decreased fractional shortening, posterior wall thickness in systole and left ventricle end-diastolic dimension, and a higher left ventricle end-systolic dimension. A markedly lower global ventricular function, as defined by a higher myocardial performance index, was observed. A higher delayed time to the peak of calcium current was also observed. The changes in cardiac function could be partially explained by a marked change in collagen expression to a profibrotic profile in Mas-deficient mice. These results indicate that Ang-(1-7)-Mas axis plays a key role in the maintenance of the structure and function of the heart.
                Bookmark

                Author and article information

                Contributors
                +1-336-7162738 , +1-336-7162456 , jvaragic@wfubmc.edu
                Journal
                J Mol Med (Berl)
                J. Mol. Med
                Journal of Molecular Medicine (Berlin, Germany)
                Springer-Verlag (Berlin/Heidelberg )
                0946-2716
                1432-1440
                25 April 2008
                2008
                : 86
                : 6
                : 663-671
                Affiliations
                [1 ]GRID grid.241167.7, ISNI 0000000121853318, The Hypertension and Vascular Research Center, Department of Physiology and Pharmacology, , Wake Forest University School of Medicine, ; Winston-Salem, NC 27157 USA
                [2 ]GRID grid.241167.7, ISNI 0000000121853318, Hypertension and Vascular Research Center, Department of Physiology and Pharmacology, , Wake Forest University School of Medicine, ; Medical Center Boulevard, Winston-Salem, NC 27157 USA
                Article
                340
                10.1007/s00109-008-0340-4
                2713173
                18437333
                c41141db-0b6a-4919-83b7-4bd3ef831871
                © Springer-Verlag 2008

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 15 January 2008
                : 28 February 2008
                : 29 February 2008
                Categories
                Review
                Custom metadata
                © Springer-Verlag 2008

                Molecular medicine
                (3-6): renin–angiotensin system,novel angiotensins,angiotensin-(1-7),angiotensin-(1-12),hypertension,cardiovascular growth

                Comments

                Comment on this article