6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Once Weekly Dulaglutide Therapy in Type 2 Diabetic Subjects, Real-world Evidence from a Tertiary Care Diabetes Center in India

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims:

          To evaluate the real-world efficacy, durability, and side-effect profile of once weekly GLP1RA: dulaglutide in Indian type 2 diabetes mellitus (T2DM) patients.

          Materials and Methods:

          A retrospective observational study. Data for efficacy (HbA1c and weight), adherence/discontinuation and patient reported side-effects, of 117 patients who were prescribed dulaglutide were analyzed.

          Results:

          Final analysis was done on complete data of 74 patients (6 months follow-up), this indicated that dulaglutide is effective (mean-reduction at 6 months of: HbA1c; 0.87% and weight; 3.8 kg). Subjects with a poorer glycemic control (greater HbA1c) or greater weight at initiation had a better fall in HbA1c and weight reduction at the end of the study. The most common side-effects were gastrointestinal (15% nausea and 6% loose motions). Also, 25% ( n = 19) of our study subjects discontinued dulaglutide because of gastrointestinal side-effects.

          Conclusion:

          Our real-world experience is well aligned to systematic data of the randomized controlled trials (RCTs) regarding the efficacy of dulaglutide in the treatment of T2DM (our study vs. RCTs; HbA1c reduction: 0.87% vs. 0.78% to 1.64%, weight reduction: 3.8 vs. 0.3 to 3 kg). The most common side-effects and reason for discontinuation were gastrointestinal side-effects. Finally, by virtue of their observed benefit, we expect a superior cardiovascular risk-reduction with dulaglutide use in our population.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.

          Cardiovascular morbidity is a major burden in patients with type 2 diabetes. In the Steno-2 Study, we compared the effect of a targeted, intensified, multifactorial intervention with that of conventional treatment on modifiable risk factors for cardiovascular disease in patients with type 2 diabetes and microalbuminuria. The primary end point of this open, parallel trial was a composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, revascularization, and amputation. Eighty patients were randomly assigned to receive conventional treatment in accordance with national guidelines and 80 to receive intensive treatment, with a stepwise implementation of behavior modification and pharmacologic therapy that targeted hyperglycemia, hypertension, dyslipidemia, and microalbuminuria, along with secondary prevention of cardiovascular disease with aspirin. The mean age of the patients was 55.1 years, and the mean follow-up was 7.8 years. The decline in glycosylated hemoglobin values, systolic and diastolic blood pressure, serum cholesterol and triglyceride levels measured after an overnight fast, and urinary albumin excretion rate were all significantly greater in the intensive-therapy group than in the conventional-therapy group. Patients receiving intensive therapy also had a significantly lower risk of cardiovascular disease (hazard ratio, 0.47; 95 percent confidence interval, 0.24 to 0.73), nephropathy (hazard ratio, 0.39; 95 percent confidence interval, 0.17 to 0.87), retinopathy (hazard ratio, 0.42; 95 percent confidence interval, 0.21 to 0.86), and autonomic neuropathy (hazard ratio, 0.37; 95 percent confidence interval, 0.18 to 0.79). A target-driven, long-term, intensified intervention aimed at multiple risk factors in patients with type 2 diabetes and microalbuminuria reduces the risk of cardiovascular and microvascular events by about 50 percent. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence

            Background People with diabetes can suffer from diverse complications that seriously erode quality of life. Diabetes, costing the United States more than $174 billion per year in 2007, is expected to take an increasingly large financial toll in subsequent years. Accurate projections of diabetes burden are essential to policymakers planning for future health care needs and costs. Methods Using data on prediabetes and diabetes prevalence in the United States, forecasted incidence, and current US Census projections of mortality and migration, the authors constructed a series of dynamic models employing systems of difference equations to project the future burden of diabetes among US adults. A three-state model partitions the US population into no diabetes, undiagnosed diabetes, and diagnosed diabetes. A four-state model divides the state of "no diabetes" into high-risk (prediabetes) and low-risk (normal glucose) states. A five-state model incorporates an intervention designed to prevent or delay diabetes in adults at high risk. Results The authors project that annual diagnosed diabetes incidence (new cases) will increase from about 8 cases per 1,000 in 2008 to about 15 in 2050. Assuming low incidence and relatively high diabetes mortality, total diabetes prevalence (diagnosed and undiagnosed cases) is projected to increase from 14% in 2010 to 21% of the US adult population by 2050. However, if recent increases in diabetes incidence continue and diabetes mortality is relatively low, prevalence will increase to 33% by 2050. A middle-ground scenario projects a prevalence of 25% to 28% by 2050. Intervention can reduce, but not eliminate, increases in diabetes prevalence. Conclusions These projected increases are largely attributable to the aging of the US population, increasing numbers of members of higher-risk minority groups in the population, and people with diabetes living longer. Effective strategies will need to be undertaken to moderate the impact of these factors on national diabetes burden. Our analysis suggests that widespread implementation of reasonably effective preventive interventions focused on high-risk subgroups of the population can considerably reduce, but not eliminate, future increases in diabetes prevalence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Long-Acting Glucagon-Like Peptide 1 Receptor Agonists

              Targeting the incretin system has become an important therapeutic approach for treating type 2 diabetes. Two drug classes have been developed: glucagon-like peptide (GLP)-1 receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors. Clinical data have revealed that these therapies improve glycemic control while reducing body weight (GLP-1 receptor agonists, specifically) and systolic blood pressure (SBP) in patients with type 2 diabetes. Furthermore, incidence of hypoglycemia is relatively low with these treatments (except when used in combination with a sulfonylurea) because of their glucose-dependent mechanism of action. There are currently two GLP-1 receptor agonists available (exenatide and liraglutide), with several more currently being developed. This review considers the efficacy and safety of both the short- and long-acting GLP-1 receptor agonists. Head-to-head clinical trial data suggest that long-acting GLP-1 receptor agonists produce superior glycemic control when compared with their short-acting counterparts. Furthermore, these long-acting GLP-1 receptor agonists were generally well tolerated, with transient nausea being the most frequently reported adverse effect. Careful consideration should be given to the selection of therapies for managing type 2 diabetes. In particular, antidiabetic agents that offer improved glycemic control without increasing cardiovascular risk factors or rates of hypoglycemia are warranted. At present, many available treatments for type 2 diabetes fail to maintain glycemic control in the longer term because of gradual disease progression as β-cell function declines. Where sulfonylureas or thiazolidinediones (common oral antidiabetic drugs) are used, the risk of hypoglycemia and weight gain can increase (1,2). The development of new therapies for the treatment of type 2 diabetes that, in addition to maintaining glycemic control, could reduce body weight and hypoglycemia risk (3,4), may help with patient management. Indeed, guidelines have been developed that support the consensus that blood pressure, weight reduction, and avoidance of hypoglycemic events should be targeted in type 2 diabetes management alongside glycemic targets. For example, the American Diabetes Association (ADA) defines multiple goals of therapy that include A1C 24 h (Table 1). Table 1 Short- and long-acting GLP-1 receptor agonists Short-acting <24 h Long-acting ≥24 h Twice daily Once daily Once weekly Exenatide (launched) Liraglutide (launched) Exenatide LAR (phase 3) Taspoglutide (phase 3) Albiglutide (phase 3) LY2189265 (phase 2) OVERVIEW OF LICENSED GLP-1 RECEPTOR AGONISTS Exenatide Exenatide, an exendin-4 mimetic with 53% sequence identity to native GLP-1, is currently approved for the treatment of type 2 diabetes as monotherapy (in the U.S.) (19) and in combination with metformin ± sulfonylurea (17). Because of its half-life of 2.4 h, exenatide is recommended for twice-daily dosing. Clinical trial results have demonstrated that exenatide, when used in combination with selected oral antidiabetic drugs, effectively reduces A1C by −0.4 to −1.5% in patients with type 2 diabetes inadequately controlled on metformin with or without a sulfonylurea (20–24). Across these studies, body weight was seen to decrease in a dose-dependent manner; treatment with 10 μg exenatide, as an add-on to metformin, resulted in the greatest weight loss (−2.8 kg) in patients previously treated with metformin alone (21). Exenatide was generally well tolerated, with mild-to-moderate gastrointestinal effects being the most common adverse effect (20–23). The number of patients experiencing nausea peaked during the initial weeks of treatment (0–8 weeks) but decreased thereafter. Rates of hypoglycemia were relatively low in these studies, although frequency of hypoglycemia was increased when exenatide was used in combination with a sulfonylurea (20). Indeed, the summary of product characteristics for exenatide states that when exenatide is used in combination with a sulfonylurea, consideration should be given to reducing the sulfonylurea dose to reduce the risk of hypoglycemia (17). Liraglutide Liraglutide is a GLP-1 analog that shares 97% sequence identity to native GLP-1 (25). The addition of a C16 fatty acid side chain enables once-daily dosing of liraglutide by prolonging its duration of action to over 24 h. This protraction is achieved through reversible binding to albumin and increased stability through heptamer formation mediated by the fatty acid side chain (26). The safety and efficacy of liraglutide have been well detailed in the phase 3 Liraglutide Effect and Action in Diabetes (LEAD) trials (27–32). Data from the LEAD trials have demonstrated that liraglutide effectively improves glycemic control (up to a 1.5% decrease in A1C) in individuals with type 2 diabetes, when used as monotherapy or in combination with one or more selected oral antidiabetic drugs. Across the trials, body weight was seen to decrease; the largest weight loss resulted from treatment with liraglutide in combination with metformin ± sulfonylurea (−3.24 kg with 1.8 mg liraglutide). Reductions in SBP were also observed across the trials (mean decrease −2.1 to −6.7 mmHg) (27–32). Liraglutide was generally well tolerated, with only transient nausea experienced toward the beginning of the studies. The rate of minor hypoglycemia was very low in these trials (incidence ranged from 0.03 to 0.6 events/patient/year with the different treatment groups [excluding those using liraglutide in combination with a sulfonylurea]). However, as seen in the exenatide trials, frequency of hypoglycemia increased slightly when liraglutide was used in combination with a sulfonylurea (incidence of major hypoglycemia: 0.056 events/patient/year; minor hypoglycemia: 1.2 events/patient/year with 1.8 mg liraglutide in combination with metformin and a sulfonylurea). OVERVIEW OF GLP-1 RECEPTOR AGONISTS IN DEVELOPMENT In addition to liraglutide and exenatide, there are several once-weekly GLP-1 receptor agonists in development: exenatide long-acting release (LAR) (Eli Lilly/Amylin), taspoglutide (Roche), albiglutide (GlaxoSmithKline), and LY2189265 (Eli Lilly) (Supplementary Table 1). At the time of writing, Roche had suspended the development of taspoglutide, currently in phase 3 trials, because of the high discontinuation rates as a result of gastrointestinal tolerability and serious hypersensitivity reactions (33). LONG- VERSUS SHORT-ACTING GLP-1 RECEPTOR AGONISTS: EFFICACY AND TOLERABILITY A number of phase 3 head-to-head trials have been conducted investigating the efficacy and tolerability of long- versus short-acting GLP-1 receptor agonists, results of which are briefly described here. Once-daily liraglutide versus twice-daily exenatide The efficacy and tolerability of once-daily liraglutide were compared with twice-daily exenatide in a phase 3 randomized head-to-head trial over 26 weeks involving 464 patients (32). Results from this trial revealed that liraglutide provided a significantly greater reduction in mean A1C compared with exenatide (−1.12 vs. −0.79%; P < 0.0001) (Supplementary Fig. 2). As a result, a greater proportion of patients with type 2 diabetes reached the ADA A1C target (≤7.0%) (3) with liraglutide compared with exenatide (54 vs. 43%; P = 0.0015) (32). In addition, fasting plasma glucose significantly decreased with liraglutide treatment (−1.61 mmol/L with liraglutide vs. −0.60 mmol/L with exenatide; P < 0.0001). The effects on body weight were similar with both liraglutide and exenatide (−3.24 vs. −2.87 kg, respectively), with a similar proportion of patients losing weight in both treatment groups (78% with liraglutide vs. 76% with exenatide) (32). Both drugs were well tolerated, with only mild-to-moderate side effects observed. Nausea was reported as the most common adverse effect with both treatments, although it was less frequent and less persistent with liraglutide. Further benefits of liraglutide treatment included a reduced number of hypoglycemic events and higher overall treatment satisfaction. A 14-week LEAD-6 extension study was also completed, in which patients, already randomized to liraglutide, stayed on liraglutide, and those on exenatide switched to once-daily liraglutide (34). Individuals switching from exenatide to liraglutide achieved an additional reduction in A1C of −0.3%, from 7.2% at week 26 to 6.9% at week 40 (Supplementary Fig. 2). Further reductions in fasting plasma glucose (−0.9 mmol/L), body weight (−0.9 kg), and SBP (−3.8 mmHg) were also seen after the switch to liraglutide. Patients switched from exenatide to liraglutide also experienced a reduction in rates of hypoglycemia from 2.6 episodes/patient-year at week 26 to 1.3 episodes/patient-year at week 40. After the switch from exenatide to liraglutide, 3.2% of patients experienced nausea during the extension period, compared with 1.5% of individuals who continued liraglutide treatment. Once-weekly exenatide LAR versus twice-daily exenatide The safety and efficacy of once-weekly exenatide LAR (2 mg) versus twice-daily exenatide (10 μg) was evaluated in a phase 2/3 randomized open-label trial over 30 weeks involving 295 patients naive to drug therapy or on one or more oral antidiabetic drugs (24). Results from this trial revealed that exenatide LAR improved glycemic control significantly more than twice-daily exenatide. Reduction in A1C was significantly greater with exenatide LAR versus twice-daily exenatide (−1.9 vs. −1.5%, respectively; P = 0.0023), and a significantly greater proportion of subjects reached the A1C target of ≤7.0% with exenatide LAR versus twice-daily exenatide (77 vs. 61%, respectively; P = 0.0039) (Supplementary Fig. 3). In addition, a significantly greater reduction in fasting plasma glucose was observed with exenatide LAR versus twice-daily exenatide (−2.3 vs. −1.4 mmol/L for exenatide LAR and twice-daily exenatide, respectively; P < 0.0001). A progressive reduction in body weight was observed throughout the study, with both treatment groups experiencing similar reductions in weight from baseline (−3.7 kg with exenatide LAR vs. −3.6 kg with twice-daily exenatide; P = 0.89). The most common adverse effects seen with exenatide LAR versus twice-daily exenatide were nausea (26.4 vs. 34.5%, respectively) and injection site pruritus (17.6 vs. 1.4%, respectively). The proportion of patients reporting minor hypoglycemic events was low in both treatment arms (0 vs. 1.1% of the study population for exenatide LAR and twice-daily exenatide, respectively); reports of minor hypoglycemia were increased in patients taking a sulfonylurea concomitantly (14.5 vs. 15.4% of the study population for exenatide LAR and twice-daily exenatide, respectively). The A1C and fasting plasma glucose reductions seen in the first 30 weeks were maintained throughout an extension study (22 weeks), where patients either switched from twice-daily exenatide to once-weekly exenatide LAR or continued exenatide LAR treatment (35). Individuals switching from twice-daily exenatide to exenatide LAR displayed further improvements in glycemic control, achieving the same reduction in A1C from baseline (−2.0% at week 52) as subjects who had been treated only by exenatide LAR. Decreases in body weight were similar for both treatment groups. As seen in the original DURATION (Diabetes Therapy Utilization: Researching Changes in A1C, Weight and Other Factors Through Intervention with Exenatide Once Weekly) -1 study, incidence of hypoglycemia was low and limited to patients who received exenatide in combination with a sulfonylurea. LONG-ACTING GLP-1 RECEPTOR AGONISTS: OVERVIEW OF CLINICAL EFFICACY Currently, there are no data directly comparing the clinical efficacy of the long-acting GLP-1 receptor agonists (liraglutide, exenatide LAR, albiglutide, taspoglutide, LY2189265). This section provides an indirect comparison of the clinical trial results achieved with long-acting GLP-1 receptor agonists to date. A1C Data from published clinical trials using long-acting GLP-1 receptor agonists (liraglutide, exenatide LAR, albiglutide, taspoglutide, LY2189265) reveal that reductions in A1C from baseline range from −0.87 to −1.9% (31,33,35–39) (Fig. 1). Results with exenatide LAR demonstrated that these improvements in A1C could be maintained after 2 years (mean A1C decrease at 2 years: −1.8%) (36). Greater reductions in A1C were seen with liraglutide compared with the DPP-4 inhibitor sitagliptin (mean A1C decrease: −1.50 and −1.24% with 1.8 and 1.2 mg liraglutide, respectively, vs. −0.90% with sitagliptin; P < 0.0001) (37). Figure 1 Change in A1C with long-acting GLP-1 receptor agonists across the clinical trials (24,32,36–39,41). *P < 0.01 vs. comparator; **P < 0.001; ***P < 0.0001; ###P < 0.0001 vs. placebo. Overall, at least 50% of patients reached an A1C target of <7.0% with the long-acting GLP-1 receptor agonists (31,33,36,37,39,40); results varied from 52% after 16 weeks of treatment with albiglutide (38) to 81% after 8 weeks of taspoglutide treatment (39). Weight loss Body weight has been shown to significantly decrease in a dose-dependent manner with all of the long-acting GLP-1 receptor agonists; results varied from −1.4 kg after 16 weeks of treatment with 30 mg albiglutide (38) to −3.87 kg after 15 weeks of treatment with exenatide LAR (2.0 mg) (40) (Fig. 2; Table 2). Figure 2 Change in body weight with long-acting GLP-1 receptor agonists across the clinical trials (24,32,36–39,41). **P < 0.001; ***P < 0.0001. Table 2 Summary of efficacy and tolerability with long-acting GLP-1 receptor agonists Liraglutide Exenatide LAR Taspoglutide Albiglutide LY2189265 Change in A1C (%) −1.1 to −1.6 −1.9 −1.2 −0.9 −1.5 Change in body weight (kg) −0.2 to −3.2 −3.7 −2.8 −1.4 −2.5 Change in SBP (mmHg) −2.3 to −6.7 −4.7 Not reported −5.8 −5.1 Nausea (%) 7–29 26.4 52 25.8 13 Vomiting (%) 4.4–17 10.8 22 12.9 Not reported Data are from the following references: 24, 27–32, 36–39, 41, and 43. SBP In addition to their effects on glycemic control and body weight, the long-acting GLP-1 receptor agonists have been shown to reduce SBP in patients with type 2 diabetes, ranging from −4.7 mmHg after 15 weeks with exenatide LAR (33) to −6.7 mmHg after 26 weeks with liraglutide (30) (Table 2). LONG-ACTING GLP-1 RECEPTOR AGONISTS: OVERVIEW OF SAFETY AND TOLERABILITY Hypoglycemia Minor hypoglycemic events have been observed at a relatively low rate after the commencement of treatment with long-acting GLP-1 receptor agonists, with between 0 and 14.5% of patients experiencing this side effect (24,28,38). As reported previously, the greatest proportion of patients reporting minor hypoglycemic events was when adding treatments to a sulfonylurea background (24,27,31,32). No major hypoglycemic events were reported. Gastrointestinal side effects Gastrointestinal effects, including nausea and vomiting, appear to be the most frequently reported adverse effect seen with the long-acting GLP-1 receptor agonists (Table 2). These side effects occur early on in the treatment, but tend to be transient and rarely result in patient withdrawal (24,32,36–39,41). After taspoglutide treatment, for example, nausea and vomiting were usually resolved within 1 day, and subsequent taspoglutide administrations were less likely to induce nausea (39). Furthermore, a smaller proportion of patients reported nausea or vomiting after liraglutide treatment compared with patients treated with exenatide (25.5% of the study population vs. 28% with twice-daily exenatide; vomiting: 6.0% of the study population vs. 9.9% with twice-daily exenatide) (32). Antibodies Antibody formation was very low in patients treated with once-weekly GLP-1 receptor agonists. Antibodies to albiglutide, which has 95% amino acid identity with native GLP-1, were seen in 2.5% of albiglutide-treated patients (38). Liraglutide shares 97% sequence identity with native GLP-1 and, across the LEAD trials, 8.6% of patients developed antiliraglutide antibodies (18); however, there were no indications from the clinical trial data that the formation of these antibodies affected efficacy (27–32,42). Indeed, even after 78 weeks’ treatment with liraglutide (26 weeks in the LEAD-6 trial plus a 52-week extension), only 2.6% of patients treated with liraglutide had low-titer liraglutide antibodies, and these antibodies did not affect reductions in A1C in these patients (32). A larger proportion of patients developed antibodies to exenatide (after 26 weeks: 113/185 patients; 61%), and this is likely to be due to the lower sequence identity of exenatide with native GLP-1. Patients with high-titer exenatide antibodies exhibited a smaller decrease in A1C (−0.5%) compared with patients with low-titer antibodies (−1.0%). Following a switch to liraglutide after 26 weeks, patients previously treated with exenatide still exhibited anti-exenatide antibodies after treatment weeks 40 (49.7%) and 78 (17.5%). However, the persistence of anti-exenatide antibodies did not affect subsequent liraglutide treatment. SUMMARY The results achieved with long-acting GLP-1 receptor agonists appear to be superior to those achieved with short-acting GLP-1 receptor agonists, with greater improvements in glycemic control after once-daily liraglutide treatment compared with twice-daily exenatide. Furthermore, exenatide LAR provided better glycemic control than exenatide with comparable weight loss. Trials are ongoing to evaluate the efficacy of exenatide LAR when compared with insulin glargine in patients with type 2 diabetes on a metformin background with or without prior sulfonylurea treatment (DURATION-3; NCT00641056) or used as monotherapy in drug-naive patients (DURATION-4; NCT00676338). As a drug class, long-acting GLP-1 receptor agonists increase glycemic control in patients with type 2 diabetes with a low risk of hypoglycemia because of their glucose-dependent mechanism of action. This drug class has also been demonstrated to promote weight loss and reduce SBP, which could be of benefit to patients with type 2 diabetes, reducing their cardiovascular risk. Furthermore, although nausea is a common side effect with long-acting GLP-1 receptor agonists, it tends to be transient and, overall, long-acting GLP-1 receptor agonists are generally well tolerated. Thus, long-acting GLP-1 receptor agonists may provide an effective therapeutic option for individuals with type 2 diabetes and are well placed to meet the standard of care guidelines set by the ADA in treating more than just blood glucose.
                Bookmark

                Author and article information

                Journal
                Indian J Endocrinol Metab
                Indian J Endocrinol Metab
                IJEM
                Indian Journal of Endocrinology and Metabolism
                Medknow Publications & Media Pvt Ltd (India )
                2230-8210
                2230-9500
                Nov-Dec 2018
                : 22
                : 6
                : 728-734
                Affiliations
                [1]Division of Endocrinology and Diabetes, Medanta, The Medicity, Gurugram, Haryana, India
                Author notes
                Address for correspondence: Dr. Jasjeet S. Wasir, Division of Endocrinology and Diabetes, Medanta, The Medicity, Sector-38, Gurugram, Haryana - 122 001, India. E-mail: drjasjeet@ 123456gmail.com
                Article
                IJEM-22-728
                10.4103/ijem.IJEM_424_18
                6330857
                c421265c-7f5f-4045-8e31-9a9b9869012a
                Copyright: © 2018 Indian Journal of Endocrinology and Metabolism

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                Categories
                Original Article

                Endocrinology & Diabetes
                dulaglutide,real-world experience,type 2 diabetes mellitus
                Endocrinology & Diabetes
                dulaglutide, real-world experience, type 2 diabetes mellitus

                Comments

                Comment on this article