4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circulating Extracellular Vesicle MicroRNA as Diagnostic Biomarkers in Early Colorectal Cancer—A Review

      review-article
      1 , * , 1 , 2 , 1
      Cancers
      MDPI
      exosome, microvesicle, miRNA, liquid biopsy, non-coding RNA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colorectal cancer (CRC) is one of the most common malignancies in the developed world, with global deaths expected to double in the next decade. Disease stage at diagnosis is the single greatest prognostic indicator for long-term survival. Unfortunately, early stage CRC is often asymptomatic and diagnosis frequently occurs at an advanced stage, where long-term survival can be as low as 14%. Circulating microRNAs encapsulated in extracellular vesicles (EVs) have recently come to prominence as novel diagnostic markers for cancer. EV-miRNAs are dysregulated in the circulation of CRC patients compared to healthy controls, and several specific miRNA candidates have been posited as diagnostic markers, including miR-21, miR-23a, miR-1246, and miR-92a. This review outlines the current landscape of EV-miRNAs as potential diagnostic markers for CRC, with a specific focus on those able to detect early stage disease.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Circulating Exosomal microRNAs as Biomarkers of Colon Cancer

          Purpose Exosomal microRNAs (miRNAs) have been attracting major interest as potential diagnostic biomarkers of cancer. The aim of this study was to characterize the miRNA profiles of serum exosomes and to identify those that are altered in colorectal cancer (CRC). To evaluate their use as diagnostic biomarkers, the relationship between specific exosomal miRNA levels and pathological changes of patients, including disease stage and tumor resection, was examined. Experimental Design Microarray analyses of miRNAs in exosome-enriched fractions of serum samples from 88 primary CRC patients and 11 healthy controls were performed. The expression levels of miRNAs in the culture medium of five colon cancer cell lines were also compared with those in the culture medium of a normal colon-derived cell line. The expression profiles of miRNAs that were differentially expressed between CRC and control sample sets were verified using 29 paired samples from post-tumor resection patients. The sensitivities of selected miRNAs as biomarkers of CRC were evaluated and compared with those of known tumor markers (CA19-9 and CEA) using a receiver operating characteristic analysis. The expression levels of selected miRNAs were also validated by quantitative real-time RT-PCR analyses of an independent set of 13 CRC patients. Results The serum exosomal levels of seven miRNAs (let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, and miR-23a) were significantly higher in primary CRC patients, even those with early stage disease, than in healthy controls, and were significantly down-regulated after surgical resection of tumors. These miRNAs were also secreted at significantly higher levels by colon cancer cell lines than by a normal colon-derived cell line. The high sensitivities of the seven selected exosomal miRNAs were confirmed by a receiver operating characteristic analysis. Conclusion Exosomal miRNA signatures appear to mirror pathological changes of CRC patients and several miRNAs are promising biomarkers for non-invasive diagnosis of the disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes.

            Since their first description, extracellular vesicles (EVs) have been the topic of avid study in a variety of physiologic contexts and are now thought to play an important role in cancer. The state of knowledge on biogenesis, molecular content and horizontal communication of diverse types of cancer EVs has expanded considerably in recent years. As a consequence, a plethora of information about EV composition and molecular function has emerged, along with the notion that cancer cells rely on these particles to invade tissues and propagate oncogenic signals at distance. The number of in vivo studies, designed to achieve a deeper understanding of the extent to which EV biology can be applied to clinically relevant settings, is rapidly growing. This review summarizes recent studies on cancer-derived EV functions, with an overview about biogenesis and molecular cargo of exosomes, microvesicles and large oncosomes. We also discuss current challenges and emerging technologies that might improve EV detection in various biological systems. Further studies on the functional role of EVs in specific steps of cancer formation and progression will expand our understanding of the diversity of paracrine signaling mechanisms in malignant growth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles.

              Dendritic cells constitutively secrete a population of small (50-90 nm diameter) Ag-presenting vesicles called exosomes. When sensitized with tumor antigenic peptides, dendritic cells produce exosomes, which stimulate anti-tumor immune responses and the rejection of established tumors in mice. Using a systematic proteomic approach, we establish the first extensive protein map of a particular exosome population; 21 new exosomal proteins were thus identified. Most proteins present in exosomes are related to endocytic compartments. New exosomal residents include cytosolic proteins most likely involved in exosome biogenesis and function, mainly cytoskeleton-related (cofilin, profilin I, and elongation factor 1alpha) and intracellular membrane transport and signaling factors (such as several annexins, rab 7 and 11, rap1B, and syntenin). Importantly, we also identified a novel category of exosomal proteins related to apoptosis: thioredoxin peroxidase II, Alix, 14-3-3, and galectin-3. These findings led us to analyze possible structural relationships between exosomes and microvesicles released by apoptotic cells. We show that although they both represent secreted populations of membrane vesicles relevant to immune responses, exosomes and apoptotic vesicles are biochemically and morphologically distinct. Therefore, in addition to cytokines, dendritic cells produce a specific population of membrane vesicles, exosomes, with unique molecular composition and strong immunostimulating properties.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                23 December 2019
                January 2020
                : 12
                : 1
                : 52
                Affiliations
                [1 ]Department of Surgery & Anaesthesia, University of Otago Wellington, 23 Mein St., Wellington 6021, New Zealand; liz.dennett@ 123456otago.ac.nz (E.R.D.); kirsty.danielson@ 123456otago.ac.nz (K.M.D.)
                [2 ]Department of General Surgery, Wellington Hospital, 23 Mein St., Wellington 6021, New Zealand
                Author notes
                [* ]Correspondence: Brendan.desmond@ 123456otago.ac.nz ; Tel.: +64-212963975
                Author information
                https://orcid.org/0000-0003-2717-5583
                https://orcid.org/0000-0002-1667-2528
                Article
                cancers-12-00052
                10.3390/cancers12010052
                7016718
                31878015
                c429d539-17de-4075-a439-71bc4ea38567
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 November 2019
                : 13 December 2019
                Categories
                Review

                exosome,microvesicle,mirna,liquid biopsy,non-coding rna
                exosome, microvesicle, mirna, liquid biopsy, non-coding rna

                Comments

                Comment on this article