36
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Restriction site free cloning (RSFC) plasmid family for seamless, sequence independent cloning in Pichia pastoris

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Tagging proteins is a standard method facilitating protein detection, purification or targeting. When tagging a certain protein of interest, it is challenging to predict which tag will give optimal results and will not interfere with protein folding, activity or yields. Ideally, multiple tags and positions are tested which however complicates molecular cloning and expression vector generation. In conventional cloning, tags are either added on PCR primers (requiring a distinct primer and PCR product per tag) or provided on the vector (typically leaving a restriction site scar).

          Results

          Here we report a vector family of 40 plasmids allowing simple, seamless fusions of a single PCR product with various N- and C-terminal tags, signal sequences and promoters. The restriction site free cloning (RSFC) strategy presented in this paper relies on seamless cloning using type IIS restriction endonucleases. After cutting out a stuffer (placeholder) fragment from the vectors, a single PCR product can be directly inserted in frame into all 40 plasmids using blunt end or TA ligations, requiring only verification of the orientation. We have established a RSFC vector family for the commonly used protein expression host Pichia pastoris and demonstrated the system with the secretory expression of horseradish peroxidase (HRP). HRP fusions to four tags (Myc, FLAG, His, Strep) and two fusion proteins (GFP and MBP) showed a 31-fold difference in volumetric activities. C-terminal tagging caused in some cases almost a complete loss of function, whereas N-terminal tags showed moderate differences.

          Conclusions

          The RSFC vectors provide an unprecedented toolbox for expression optimization in P. pastoris. The results obtained with HRP underline the importance of comparing different tags to maximize activities of fusion proteins. In a similar fashion the RSFC strategy can be applied in other expression hosts to screen for optimal promoters, signal sequences or to facilitate the evaluation of (iso-) enzyme families.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12934-015-0293-6) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Golden Gate Shuffling: A One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes

          We have developed a protocol to assemble in one step and one tube at least nine separate DNA fragments together into an acceptor vector, with 90% of recombinant clones obtained containing the desired construct. This protocol is based on the use of type IIs restriction enzymes and is performed by simply subjecting a mix of 10 undigested input plasmids (nine insert plasmids and the acceptor vector) to a restriction-ligation and transforming the resulting mix in competent cells. The efficiency of this protocol allows generating libraries of recombinant genes by combining in one reaction several fragment sets prepared from different parental templates. As an example, we have applied this strategy for shuffling of trypsinogen from three parental templates (bovine cationic trypsinogen, bovine anionic trypsinogen and human cationic trypsinogen) each divided in 9 separate modules. We show that one round of shuffling using the 27 trypsinogen entry plasmids can easily produce the 19,683 different possible combinations in one single restriction-ligation and that expression screening of a subset of the library allows identification of variants that can lead to higher expression levels of trypsin activity. This protocol, that we call ‘Golden Gate shuffling’, is robust, simple and efficient, can be performed with templates that have no homology, and can be combined with other shuffling protocols in order to introduce any variation in any part of a given gene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC.

            We describe a new cloning method, sequence and ligation-independent cloning (SLIC), which allows the assembly of multiple DNA fragments in a single reaction using in vitro homologous recombination and single-strand annealing. SLIC mimics in vivo homologous recombination by relying on exonuclease-generated ssDNA overhangs in insert and vector fragments, and the assembly of these fragments by recombination in vitro. SLIC inserts can also be prepared by incomplete PCR (iPCR) or mixed PCR. SLIC allows efficient and reproducible assembly of recombinant DNA with as many as 5 and 10 fragments simultaneously. SLIC circumvents the sequence requirements of traditional methods and functions much more efficiently at very low DNA concentrations when combined with RecA to catalyze homologous recombination. This flexibility allows much greater versatility in the generation of recombinant DNA for the purposes of synthetic biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              REBASE--a database for DNA restriction and modification: enzymes, genes and genomes.

              REBASE is a comprehensive database of information about restriction enzymes, DNA methyltransferases and related proteins involved in the biological process of restriction-modification (R-M). It contains fully referenced information about recognition and cleavage sites, isoschizomers, neoschizomers, commercial availability, methylation sensitivity, crystal and sequence data. Experimentally characterized homing endonucleases are also included. The fastest growing segment of REBASE contains the putative R-M systems found in the sequence databases. Comprehensive descriptions of the R-M content of all fully sequenced genomes are available including summary schematics. The contents of REBASE may be browsed from the web (http://rebase.neb.com) and selected compilations can be downloaded by ftp (ftp.neb.com). Additionally, monthly updates can be requested via email.
                Bookmark

                Author and article information

                Contributors
                thomas.vogl@aon.at
                mudassar094@hotmail.com
                florian.krainer@tugraz.at
                helmut.schwab@tugraz.at
                a.glieder@tugraz.at
                Journal
                Microb Cell Fact
                Microb. Cell Fact
                Microbial Cell Factories
                BioMed Central (London )
                1475-2859
                14 July 2015
                14 July 2015
                2015
                : 14
                : 103
                Affiliations
                [ ]Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
                [ ]Queensland University of Technology, 2 George St., Brisbane, QLD 4000 Australia
                Article
                293
                10.1186/s12934-015-0293-6
                4501187
                26169367
                c42c5913-9e1c-4ae7-8239-56115ebf2c5a
                © Vogl et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 31 March 2015
                : 30 June 2015
                Categories
                Technical Notes
                Custom metadata
                © The Author(s) 2015

                Biotechnology
                protein tagging,protein tags,seamless cloning,pichia pastoris,expression optimization,cloning strategy,type iis restriction endonucleases

                Comments

                Comment on this article