13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      miR-200bc/429 Inhibits Osteosarcoma Cell Proliferation and Invasion by Targeting PMP22

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          MicroRNAs (miRNAs) are small non-coding RNAs which play a crucial role in diverse biological processes and could contribute to cancer development and progression. MiR-200bc/429 have been found to be aberrantly expressed in osteosarcoma (OS). However, the features of miR-200bc/429 in the tumorigenesis and progress of OS remain poorly understood.

          Material/Methods

          The miR-200bc/429 expression was firstly identified in human OS clinical samples and cell lines by quantitative real-time PCR (qRT-PCR). After transfection with miR-200bc/429 mimics or negative control in U2OS or MG63 cells, cell proliferation was measured by CCK-8 assay. Following that, wound-healing assay and Transwell invasion assay were performed to evaluate cell migration and invasion, respectively. Finally, luciferase reporter assay and Western blot analysis were performed to determine if peripheral myelin protein-22 (PMP22) is a direct target of miR-200bc/429.

          Results

          Results revealed that miR-200bc/429 were significantly depressed in human OS tissues and cell lines by qRT-PCR. Then, restoration of miR-200bc/429 significantly inhibited cell proliferation (P<0.05) and invasion (P<0.05) in vitro. Luciferase reporter assay and Western blot analysis revealed that miR-200bc/429 could directly target PMP22 3′ untranslated region (UTR) and inhibit its expression in U2OS and MG63 cells.

          Conclusions

          These findings suggest that miR-200bc/429 inhibit OS cells proliferation and invasion by targeting PMP22, and function as a tumor suppressor and may be a patent molecular marker as well as a potential target for OS therapy.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          MiR-200, a new star miRNA in human cancer.

          MicroRNAs (miRNAs) are a set of non-coding small RNA molecules in control of gene expression at posttranscriptional/translational level. They not only play crucial roles in normal developmental progress, but also are commonly dysregulated in human diseases, including cancer. MiR-200 is a family of tumor suppressor miRNAs consisting of five members, which are significantly involved in inhibition of epithelial-to-mesenchymal transition (EMT), repression of cancer stem cells (CSCs) self-renewal and differentiation, modulation of cell division and apoptosis, and reversal of chemoresistance. In this article, we summarize the latest findings with regard to the tumor suppressor signatures of miR-200 and the regulatory mechanisms of miR-200 expression. The collected evidence supports that miR-200 is becoming a new star miRNA in study of human cancer. Published by Elsevier Ireland Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Meta-Analysis of Osteosarcoma Outcomes in the Modern Medical Era

            Four decades ago, specialized chemotherapy regimens turned osteosarcoma, once considered a uniformly fatal disease, into a disease in which a majority of patients survive. Though significant survival gains were made from the 1960s to the 1980s, further outcome improvements appear to have plateaued. This study aims to comprehensively review all significant, published data regarding osteosarcoma and outcome in the modern medical era in order to gauge treatment progress. Our results indicate that published survival improved dramatically from 1960s to 1980s and then leveled, or in some measures decreased. Recurrence rates decreased in the 1970s and then leveled. In contrast, published limb salvage rates have increased significantly every recent decade until the present. Though significant gains have been made in the past, no improvement in published osteosarcoma survival has been seen since 1980, highlighting the importance of a new strategy in the systemic management of this still very lethal condition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP.

              MicroRNAs (miRNAs) are short non-coding RNA molecules, which post-transcriptionally regulate genes expression and play crucial roles in diverse biological processes. Recent studies have shown that dysregulation of miRNAs might modulate the resistance of cancer cells to anti-cancer drugs, yet the modulation mechanism is not fully understood. We aimed to investigate the possible role of miRNAs in the development of multidrug resistance (MDR) in human gastric and lung cancer cell lines. miRNA Quantitative real-time PCR was used to detect the different miRNA expression levels between drug resistant and parental cancer cells. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to test the drug-resistant phenotype changes in cancer cells via over or downregulation of miRNAs. Dual-luciferase activity assay was used to verify the target genes of miRNAs. Western blot analysis and apoptosis assay were used to elucidate the mechanism of miRNAs on modulating drug resistance in cancer cells. miR-200bc/429 cluster was downregulated, while BCL2 and XIAP were upregulated in both MDR SGC7901/VCR (vincristine) and A549/CDDP (cisplatin) cells, compared with the parental SGC7901 and A549 cells, respectively. Overexpression of miR-200bc/429 cluster sensitized SGC7901/VCR and A549/CDDP cells to anti-cancer drugs, respectively. Both BCL2 and XIAP 3'-UTR reporters constructed in MDR cells suggested that BCL2 and XIAP were the common target genes of the miR-200bc/429 cluster. Enforced miR-200bc/429 cluster expression reduced BCL2 and XIAP protein level and sensitized both MDR cells to VCR-induced and CDDP-induced apoptosis, respectively. Our findings first suggest that miR-200bc/429 cluster could play a role in the development of MDR in both gastric and lung cancer cell lines, at least in part by modulation of apoptosis via targeting BCL2 and XIAP.
                Bookmark

                Author and article information

                Journal
                Med Sci Monit
                Med. Sci. Monit
                Medical Science Monitor
                Medical Science Monitor : International Medical Journal of Experimental and Clinical Research
                International Scientific Literature, Inc.
                1234-1010
                1643-3750
                2017
                24 February 2017
                : 23
                : 1001-1008
                Affiliations
                Department of Orthopedics, Tianjin Third Central Hospital, Tianjin, P.R. China
                Author notes
                Corresponding Author: Han Jiang, e-mail: baku0909@ 123456126.com
                [A]

                Study Design

                [B]

                Data Collection

                [C]

                Statistical Analysis

                [D]

                Data Interpretation

                [E]

                Manuscript Preparation

                [F]

                Literature Search

                [G]

                Funds Collection

                Article
                900084
                10.12659/MSM.900084
                5338570
                28234890
                c42f0b32-de1a-4b37-bd0f-778d732f3988
                © Med Sci Monit, 2017

                This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

                History
                : 15 June 2016
                : 11 July 2016
                Categories
                Lab/In Vitro Research

                cell proliferation,micrornas,osteosarcoma
                cell proliferation, micrornas, osteosarcoma

                Comments

                Comment on this article