34
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Physiologically Relevant Measurements of Nitric Oxide in Cardiovascular Research Using Electrochemical Microsensors

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nitric oxide (NO) plays an important role in the regulation of blood flow. Pharmacological tools and a series of other techniques have been developed for studying the NO/ L-arginine pathway, but it has proved difficult to make a quantitative link between effect and tissue NO concentration. NO microsensors have been applied with success for the measurement of NO in suspensions of mitochondria and cells, such as platelets and leukocytes, and in cell cultures, which together with other interventions or measurements are particularly useful for the examination of cell signalling related to the NO/ L-arginine pathway. In isolated vascular segments, studies using the NO microsensor have defined the relationship between NO concentration and relaxation and revealed residual NO release in the presence of NO synthase inhibitors. Moreover, simultaneous measurements of NO concentration and vasorelaxation in isometric preparations have shown that agonist-induced relaxation is L-arginine dependent and NO release is reduced in hypertension. By placing NO microsensors in catheters, it is possible to measure NO in the living animal and man. This approach has been applied for the measurements of NO concentration in relation to increases in flow, erection, in conditions of hypoxia, and in endotoxemia. However, further methodological development of NO microsensors is necessary to avoid the influence of changes in temperature, pH and oxygen on the measurements.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.

          Despite its very potent vasodilating action in vivo, acetylcholine (ACh) does not always produce relaxation of isolated preparations of blood vessels in vitro. For example, in the helical strip of the rabbit descending thoracic aorta, the only reported response to ACh has been graded contractions, occurring at concentrations above 0.1 muM and mediated by muscarinic receptors. Recently, we observed that in a ring preparation from the rabbit thoracic aorta, ACh produced marked relaxation at concentrations lower than those required to produce contraction (confirming an earlier report by Jelliffe). In investigating this apparent discrepancy, we discovered that the loss of relaxation of ACh in the case of the strip was the result of unintentional rubbing of its intimal surface against foreign surfaces during its preparation. If care was taken to avoid rubbing of the intimal surface during preparation, the tissue, whether ring, transverse strip or helical strip, always exhibited relaxation to ACh, and the possibility was considered that rubbing of the intimal surface had removed endothelial cells. We demonstrate here that relaxation of isolated preparations of rabbit thoracic aorta and other blood vessels by ACh requires the presence of endothelial cells, and that ACh, acting on muscarinic receptors of these cells, stimulates release of a substance(s) that causes relaxation of the vascular smooth muscle. We propose that this may be one of the principal mechanisms for ACh-induced vasodilation in vivo. Preliminary reports on some aspects of the work have been reported elsewhere.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide.

            Nitric oxide (NO) physiologically stimulates the sarco/endoplasmic reticulum calcium (Ca(2+)) ATPase (SERCA) to decrease intracellular Ca(2+) concentration and relax cardiac, skeletal and vascular smooth muscle. Here, we show that NO-derived peroxynitrite (ONOO(-)) directly increases SERCA activity by S-glutathiolation and that this modification of SERCA is blocked by irreversible oxidation of the relevant cysteine thiols during atherosclerosis. Purified SERCA was S-glutathiolated by ONOO(-) and the increase in Ca(2+)-uptake activity of SERCA reconstituted in phospholipid vesicles required the presence of glutathione. Mutation of the SERCA-reactive Cys674 to serine abolished these effects. Because superoxide scavengers decreased S-glutathiolation of SERCA and arterial relaxation by NO, ONOO(-) is implicated as the intracellular mediator. NO-dependent relaxation as well as S-glutathiolation and activation of SERCA were decreased by atherosclerosis and Cys674 was found to be oxidized to sulfonic acid. Thus, irreversible oxidation of key thiol(s) in disease impairs NO-induced relaxation by preventing reversible S-glutathiolation and activation of SERCA by NO/ONOO(-).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor.

              Nitric oxide is an important bioregulatory molecule, being responsible, for example, for activity of endothelium-derived relaxing factor (EDRF). Acute hypertension, diabetes, ischaemia and atherosclerosis are associated with abnormalities of EDRF. Nitric oxide is thought to be a retrograde messenger in the central nervous system. The technology is not yet available for rapid detection of NO released by a single cell in the presence of oxygen and/or nitrite, so the release, distribution and reactivity of endogenous NO in biological systems cannot be analysed. Here we describe a porphyrinic microsensor that we have developed and applied to monitoring NO release in a microsystem. We selectively measured in situ the NO released from a single cell with a response time of less than 10 ms. The microsensor consists of p-type semiconducting polymeric porphyrin and a cationic exchanger (Nafion) deposited on a thermally sharpened carbon fibre with a tip diameter of approximately 0.5 microns. The microsensor, which can be operated in either the amperometric or voltammetric mode, is characterized by a linear response up to 300 microM and a detection limit of 10 nM. Nitric oxide at the level of 10(-20) mols can be detected in a single cell.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2006
                December 2005
                21 December 2005
                : 43
                : 1
                : 70-85
                Affiliations
                aDepartment of Physiology and Pharmacology, University of Strathclyde, Glasgow, Scotland, UK; bDepartment of Pharmacology, University of Aarhus, Aarhus, Denmark
                Article
                89547 J Vasc Res 2006;43:70–85
                10.1159/000089547
                16276114
                c437d068-aaf9-4ce4-bb5d-5d1e0412b1be
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 17 May 2005
                : 23 September 2005
                Page count
                Figures: 4, Tables: 1, References: 118, Pages: 16
                Categories
                Review

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Human vein endothelial cells,<italic>L</italic>-arginine pathway,Nitric oxide microsensor

                Comments

                Comment on this article