24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      JNK2 regulates vascular remodeling in pulmonary hypertension

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pulmonary arterial (PA) wall modifications are key pathological features of pulmonary hypertension (PH). Although such abnormalities correlate with heightened phosphorylation of c-Jun N-terminal kinases 1/2 (JNK1/2) in a rat model of PH, the contribution of specific JNK isoforms to the pathophysiology of PH is unknown. Hence, we hypothesized that activation of either one, or both JNK isoforms regulates PA remodeling in PH. We detected increased JNK1/2 phosphorylation in the thickened vessels of PH patients’ lungs compared to that in lungs of healthy individuals. JNK1/2 phosphorylation paralleled a marked reduction in MAP kinase phosphatase 1 (JNK dephosphorylator) expression in patients’ lungs. Association of JNK1/2 activation with vascular modification was confirmed in the calf model of severe hypoxia-induced PH. To ascertain the role of each JNK isoform in pathophysiology of PH, wild-type (WT), JNK1 null (JNK1 -/-), and JNK2 null (JNK2 -/-) mice were exposed to chronic hypoxia (10% O 2 for six weeks) to develop PH. In hypoxic WT lungs, an increase in JNK1/2 phosphorylation was associated with PH-like pathology. Hallmarks of PH pathophysiology, i.e. excessive accumulation of extracellular matrix and vessel muscularization with medial wall thickening, was also detected in hypoxic JNK1 -/- lungs, but not in hypoxia-exposed JNK2 -/- lungs. However, hypoxia-induced increases in right ventricular systolic pressure (RVSP) and in right ventricular hypertrophy (RVH) were similar in all three genotypes. Our findings suggest that JNK2 participates in PA remodeling (but likely not in vasoconstriction) in murine hypoxic PH and that modulating JNK2 actions might quell vascular abnormalities and limit the course of PH.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular and molecular basis of pulmonary arterial hypertension.

          Pulmonary arterial hypertension (PAH) is caused by functional and structural changes in the pulmonary vasculature, leading to increased pulmonary vascular resistance. The process of pulmonary vascular remodeling is accompanied by endothelial dysfunction, activation of fibroblasts and smooth muscle cells, crosstalk between cells within the vascular wall, and recruitment of circulating progenitor cells. Recent findings have reestablished the role of chronic vasoconstriction in the remodeling process. Although the pathology of PAH in the lung is well known, this article is concerned with the cellular and molecular processes involved. In particular, we focus on the role of the Rho family guanosine triphosphatases in endothelial function and vasoconstriction. The crosstalk between endothelium and vascular smooth muscle is explored in the context of mutations in the bone morphogenetic protein type II receptor, alterations in angiopoietin-1/TIE2 signaling, and the serotonin pathway. We also review the role of voltage-gated K(+) channels and transient receptor potential channels in the regulation of cytosolic [Ca(2+)] and [K(+)], vasoconstriction, proliferation, and cell survival. We highlight the importance of the extracellular matrix as an active regulator of cell behavior and phenotype and evaluate the contribution of the glycoprotein tenascin-c as a key mediator of smooth muscle cell growth and survival. Finally, we discuss the origins of a cell type critical to the process of pulmonary vascular remodeling, the myofibroblast, and review the evidence supporting a contribution for the involvement of endothelial-mesenchymal transition and recruitment of circulating mesenchymal progenitor cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase.

            Abdominal aortic aneurysm (AAA) is a common disease among elderly people that, when surgical treatment is inapplicable, results in progressive expansion and rupture of the aorta with high mortality. Although nonsurgical treatment for AAA is much awaited, few options are available because its molecular pathogenesis remains elusive. Here, we identify JNK as a proximal signaling molecule in the pathogenesis of AAA. Human AAA tissue showed a high level of phosphorylated JNK. We show that JNK programs a gene expression pattern in different cell types that cooperatively enhances the degradation of the extracellular matrix while suppressing biosynthetic enzymes of the extracellular matrix. Selective inhibition of JNK in vivo not only prevented the development of AAA but also caused regression of established AAA in two mouse models. Thus, JNK promotes abnormal extracellular matrix metabolism in the tissue of AAA and may represent a therapeutic target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance.

              The c-Jun N-terminal kinases (JNKs) were originally identified by their ability to phosphorylate c-Jun in response to UV-irradiation, but now are recognized as critical regulators of various aspects of mammalian physiology, including: cell proliferation, cell survival, cell death, DNA repair and metabolism. JNK-mediated phosphorylation enhances the ability of c-Jun, a component of the AP-1 transcription factor, to activate transcription, in response to a plethora of extracellular stimuli. The JNK activation leads to induction of AP-1-dependent target genes involved in cell proliferation, cell death, inflammation, and DNA repair. The JNKs, which are encoded by three different Jnk loci, are now known to be regulated by many other stimuli, from pro-inflammatory cytokines to obesity, in addition to UV-irradiation. Targeted disruption of the Jnk loci in mice has proved to be a critical tool in better understanding their physiological functions. Such studies revealed that the JNKs play important roles in numerous cellular processes, including: programmed cell death, T cell differentiation, negative regulation of insulin signaling, control of fat deposition, and epithelial sheet migration. Importantly, the JNKs have become prime targets for drug development in several important clinical areas, including: inflammation, diabetes, and cancer.
                Bookmark

                Author and article information

                Journal
                Pulm Circ
                Pulm Circ
                PUL
                sppul
                Pulmonary Circulation
                SAGE Publications (Sage UK: London, England )
                2045-8932
                2045-8940
                02 May 2018
                Jul-Sep 2018
                : 8
                : 3
                : 2045894018778156
                Affiliations
                [1 ]Department of Internal Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
                [2 ]Department of Basic Medical Sciences, A. T. Still University, School of Osteopathic Medicine Arizona, Mesa, AZ, USA
                [3 ]Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
                [4 ]Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
                Author notes
                [*]Mita Das, Department of Internal Medicine, College of Medicine Phoenix, University of Arizona, 550 E. Van Buren Street, Phoenix, AZ 85004, USA. Email: mita.das5000@ 123456gmail.com
                Article
                10.1177_2045894018778156
                10.1177/2045894018778156
                6055330
                29718758
                c439981c-9170-44e6-81d6-61e31d2f93e8
                © The Author(s) 2018

                Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 14 March 2017
                : 26 April 2018
                Funding
                Funded by: National Heart, Lung, and Blood Institute, FundRef https://doi.org/10.13039/100000050;
                Award ID: HL64917
                Categories
                Research Article
                Custom metadata
                July-September 2018

                Respiratory medicine
                hypoxia,pulmonary hypertension,vascular remodeling,jnk1 and jnk2 null mice

                Comments

                Comment on this article