14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antarctica is the coldest, windiest, and driest continent on Earth. In this sense, microorganisms that inhabit Antarctica environments have to be adapted to harsh conditions. Fungal strains affiliated with Ascomycota and Basidiomycota phyla have been recovered from terrestrial and marine Antarctic samples. They have been used for the bioprospecting of molecules, such as enzymes. Many reports have shown that these microorganisms produce cold-adapted enzymes at low or mild temperatures, including hydrolases (e.g. α-amylase, cellulase, chitinase, glucosidase, invertase, lipase, pectinase, phytase, protease, subtilase, tannase, and xylanase) and oxidoreductases (laccase and superoxide dismutase). Most of these enzymes are extracellular and their production in the laboratory has been carried out mainly under submerged culture conditions. Several studies showed that the cold-adapted enzymes exhibit a wide range in optimal pH (1.0-9.0) and temperature (10.0-70.0 °C). A myriad of methods have been applied for cold-adapted enzyme purification, resulting in purification factors and yields ranging from 1.70 to 1568.00-fold and 0.60 to 86.20%, respectively. Additionally, some fungal cold-adapted enzymes have been cloned and expressed in host organisms. Considering the enzyme-producing ability of microorganisms and the properties of cold-adapted enzymes, fungi recovered from Antarctic environments could be a prolific genetic resource for biotechnological processes (industrial and environmental) carried out at low or mild temperatures.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Cold-adapted enzymes.

          By far the largest proportion of the Earth's biosphere is comprised of organisms that thrive in cold environments (psychrophiles). Their ability to proliferate in the cold is predicated on a capacity to synthesize cold-adapted enzymes. These enzymes have evolved a range of structural features that confer a high level of flexibility compared to thermostable homologs. High flexibility, particularly around the active site, is translated into low-activation enthalpy, low-substrate affinity, and high specific activity at low temperatures. High flexibility is also accompanied by a trade-off in stability, resulting in heat lability and, in the few cases studied, cold lability. This review addresses the structure, function, and stability of cold-adapted enzymes, highlighting the challenges for immediate and future consideration. Because of the unique properties of cold-adapted enzymes, they are not only an important focus in extremophile biology, but also represent a valuable model for fundamental research into protein folding and catalysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Towards an integrated phylogenetic classification of the Tremellomycetes

            Families and genera assigned to Tremellomycetes have been mainly circumscribed by morphology and for the yeasts also by biochemical and physiological characteristics. This phenotype-based classification is largely in conflict with molecular phylogenetic analyses. Here a phylogenetic classification framework for the Tremellomycetes is proposed based on the results of phylogenetic analyses from a seven-genes dataset covering the majority of tremellomycetous yeasts and closely related filamentous taxa. Circumscriptions of the taxonomic units at the order, family and genus levels recognised were quantitatively assessed using the phylogenetic rank boundary optimisation (PRBO) and modified general mixed Yule coalescent (GMYC) tests. In addition, a comprehensive phylogenetic analysis on an expanded LSU rRNA (D1/D2 domains) gene sequence dataset covering as many as available teleomorphic and filamentous taxa within Tremellomycetes was performed to investigate the relationships between yeasts and filamentous taxa and to examine the stability of undersampled clades. Based on the results inferred from molecular data and morphological and physiochemical features, we propose an updated classification for the Tremellomycetes. We accept five orders, 17 families and 54 genera, including seven new families and 18 new genera. In addition, seven families and 17 genera are emended and one new species name and 185 new combinations are proposed. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the species names that are temporarily maintained.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diversity and ecology of psychrophilic microorganisms.

              Cold environments represent the majority of the biosphere on Earth and have been successfully colonized by psychrophilic microorganisms that are able to thrive at low temperatures and to survive and even maintain metabolic activity at subzero temperatures. These microorganisms play key ecological roles in their habitats and include a wide diversity of representatives of all three domains (Bacteria, Archaea, Eukarya). In this review, we summarize recent knowledge on the abundance, on the taxonomic and functional biodiversity, on low temperature adaptation and on the biogeography of microbial communities in a range of aquatic and terrestrial cold environments. Copyright © 2010 Institut Pasteur. Published by Elsevier SAS. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Biotechnology
                Critical Reviews in Biotechnology
                Informa UK Limited
                0738-8551
                1549-7801
                September 14 2017
                May 19 2018
                December 11 2017
                May 19 2018
                : 38
                : 4
                : 600-619
                Affiliations
                [1 ] Universidade Federal de Alagoas, Campus Arapiraca, Arapiraca, Brazil;
                [2 ] Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, Brazil;
                [3 ] Departamento de Bioquímica e Microbiologia, Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro, Rio Claro, Brazil;
                [4 ] Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina;
                [5 ] Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
                Article
                10.1080/07388551.2017.1379468
                29228814
                c43ccd33-923b-4228-a73d-a2215ffcc6a3
                © 2018
                History

                Comments

                Comment on this article