6
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanocrystalization: An Emerging Technology to Enhance the 
Bioavailability of Poorly Soluble Drugs

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most of the active pharmaceutical ingredient used in the management of disease have poor water solubility and offer grueling problems in drug formulation development since low solubility is generally associated with poor dissolution characteristics which leads to poor oral bioavailability. The great challenge for the development of a pharmaceutical product is to create its new formulation and drug delivery system to limit solubility problems of existing drug candidate. Limited drug-loading capacity requires a large amount of carrier material to get appropriate encapsulation of the drug, which is another major challenge in the development of pharmaceutical product which could be resolved by developing nanocrystals (NCs). A significant research in the past few years has been done to develop NCs which helps in the delivery of poorly water soluble drugs via different routes. The technology could continue to thrive as a useful tool in pharmaceutical sciences for the improvement of drug solubility, absorption and bioavailability. Many crystalline compounds have pulled in incredible consideration much of the time, due to their ability to show good physical and chemical properties when contrasted with their amorphous counterparts. Nanocrystals have been proven to show atypical properties compared to the bulk. This review article explores the principles of the important nanocrystallization techniques including NCs characterization and its application.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          In vivo imaging of quantum dots encapsulated in phospholipid micelles.

          Fluorescent semiconductor nanocrystals (quantum dots) have the potential to revolutionize biological imaging, but their use has been limited by difficulties in obtaining nanocrystals that are biocompatible. To address this problem, we encapsulated individual nanocrystals in phospholipid block-copolymer micelles and demonstrated both in vitro and in vivo imaging. When conjugated to DNA, the nanocrystal-micelles acted as in vitro fluorescent probes to hybridize to specific complementary sequences. Moreover, when injected into Xenopus embryos, the nanocrystal-micelles were stable, nontoxic (<5 x 10(9) nanocrystals per cell), cell autonomous, and slow to photobleach. Nanocrystal fluorescence could be followed to the tadpole stage, allowing lineage-tracing experiments in embryogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation.

            For many new chemical entities (NCE) of very low solubility oral bioavailability enhancement by micronisation is not sufficient, the next step taken was nanonisation. The production of drug nanocrystals by bottom up techniques (precipitation) is briefly described, main focus is given on particle diminution by high pressure homogenisation. Homogenisation can be performed in water (DissoCubes) or alternatively in non-aqueous media or water-reduced media (Nanopure). There is also a combination process of precipitation followed by a second high energy step, e.g. homogenisation (NANOEDGE). The result is a suspension of drug nanocrystals in a liquid, the so-called nanosuspension. Presented are the physical background of the diminution process, effects of production parameters (power density, number of homogenisation cycles) on crystal size, clinical batch production and scaling up of the production. As an important point the transfer of the liquid nanosuspensions to patient convenient oral dosage forms such as tablets and capsules is described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nanocrystal technology, drug delivery and clinical applications

              Nanotechnology will affect our lives tremendously over the next decade in very different fields, including medicine and pharmacy. Transfer of materials into the nanodimension changes their physical properties which were used in pharmaceutics to develop a new innovative formulation principle for poorly soluble drugs: the drug nanocrystals. The drug nanocrystals do not belong to the future; the first products are already on the market. The industrially relevant production technologies, pearl milling and high pressure homogenization, are reviewed. The physics behind the drug nanocrystals and changes of their physical properties are discussed. The marketed products are presented and the special physical effects of nanocrystals explained which are utilized in each market product. Examples of products in the development pipelines (clinical phases) are presented and the benefits for in vivo administration of drug nanocrystals are summarized in an overview.
                Bookmark

                Author and article information

                Journal
                Pharm Nanotechnol
                Pharm Nanotechnol
                PNT
                Pharmaceutical Nanotechnology
                Bentham Science Publishers
                2211-7385
                2211-7393
                December 2019
                December 2019
                : 7
                : 4
                : 259-278
                Affiliations
                Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp 
Vihar Sec III, New Delhi, -110017 , India;

                Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-62, India
                Author notes
                [* ]Address correspondence to this author at the Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar Sec III, New Delhi-110017, India and Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-62, India; Tel: 9818453518; E-mail: stalegaonkar@ 123456gmail.com
                Article
                PNT-7-259
                10.2174/2211738507666190405182524
                6967137
                30961518
                c444a2d1-6541-4d0f-844e-86a1527c7c17
                © 2019 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 26 January 2019
                : 18 April 2019
                : 01 April 2019
                Categories
                Article

                application,crystalline state,dissocube,dissolution,high pressure homogenization,milling,nanocrystal (ncs),nanopure

                Comments

                Comment on this article