Blog
About

24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NO homeostasis is a key regulator of early nitrate perception and root elongation in maize*

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nitrate reductase produces nitric oxide (NO) as an early response to nitrate, and the coordinated induction of ns-haemoglobins finely modulates NO level. The control of NO homeostasis regulates root elongation and represents a novel key component of nitrate signaling in maize

          Abstract

          Crop plant development is strongly dependent on nitrogen availability in the soil and on the efficiency of its recruitment by roots. For this reason, the understanding of the molecular events underlying root adaptation to nitrogen fluctuations is a primary goal to develop biotechnological tools for sustainable agriculture. However, knowledge about molecular responses to nitrogen availability is derived mainly from the study of model species. Nitric oxide (NO) has been recently proposed to be implicated in plant responses to environmental stresses, but its exact role in the response of plants to nutritional stress is still under evaluation. In this work, the role of NO production by maize roots after nitrate perception was investigated by focusing on the regulation of transcription of genes involved in NO homeostasis and by measuring NO production in roots. Moreover, its involvement in the root growth response to nitrate was also investigated. The results provide evidence that NO is produced by nitrate reductase as an early response to nitrate supply and that the coordinated induction of non-symbiotic haemoglobins (nsHbs) could finely regulate the NO steady state. This mechanism seems to be implicated on the modulation of the root elongation in response to nitrate perception. Moreover, an improved agar-plate system for growing maize seedlings was developed. This system, which allows localized treatments to be performed on specific root portions, gave the opportunity to discern between localized and systemic effects of nitrate supply to roots.

          Related collections

          Most cited references 63

          • Record: found
          • Abstract: found
          • Article: not found

          An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture.

          The development of plant root systems is sensitive to the availability and distribution of nutrients within the soil. For example, lateral roots proliferate preferentially within nitrate (NO3-)-rich soil patches. A NO3--inducible Arabidopsis gene (ANR1), was identified that encodes a member of the MADS box family of transcription factors. Transgenic plants in which ANR1 was repressed had an altered sensitivity to NO3- and no longer responded to NO3--rich zones by lateral root proliferation, indicating that ANR1 is a key determinant of developmental plasticity in Arabidopsis roots.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of nutrient availability in regulating root architecture.

            The ability of plants to respond appropriately to nutrient availability is of fundamental importance for their adaptation to the environment. Nutrients such as nitrate, phosphate, sulfate and iron act as signals that can be perceived. These signals trigger molecular mechanisms that modify cell division and cell differentiation processes within the root and have a profound impact on root system architecture. Important developmental processes, such as root-hair formation, primary root growth and lateral root formation, are particularly sensitive to changes in the internal and external concentration of nutrients. The responses of root architecture to nutrients can be modified by plant growth regulators, such as auxins, cytokinins and ethylene, suggesting that the nutritional control of root development may be mediated by changes in hormone synthesis, transport or sensitivity. Recent information points to the existence of nutrient-specific signal transduction pathways that interpret the external and internal concentrations of nutrients to modify root development. Progress in this field has led to the cloning of regulatory genes that play pivotal roles in nutrient-induced changes to root development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How do plants respond to nutrient shortage by biomass allocation?

              Plants constantly sense the changes in their environment; when mineral elements are scarce, they often allocate a greater proportion of their biomass to the root system. This acclimatory response is a consequence of metabolic changes in the shoot and an adjustment of carbohydrate transport to the root. It has long been known that deficiencies of essential macronutrients (nitrogen, phosphorus, potassium and magnesium) result in an accumulation of carbohydrates in leaves and roots, and modify the shoot-to-root biomass ratio. Here, we present an update on the effects of mineral deficiencies on the expression of genes involved in primary metabolism in the shoot, the evidence for increased carbohydrate concentrations and altered biomass allocation between shoot and root, and the consequences of these changes on the growth and morphology of the plant root system.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                jexbot
                jexbot
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                January 2014
                12 November 2013
                12 November 2013
                : 65
                : 1
                : 185-200
                Affiliations
                1Department of Agriculture, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell’Università , 16, 35020 Legnaro (PD), Italy
                2Department of Life Sciences and Systems Biology, University of Turin , Viale Mattioli 25, 10125 Turin, Italy
                Author notes
                To whom correspondence should be addressed. E-mail: silvia.quaggiotti@ 123456unipd.it
                Article
                10.1093/jxb/ert358
                3883287
                24220653
                © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                Page count
                Pages: 16
                Categories
                Research Paper

                Comments

                Comment on this article