6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consolidation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irreversible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI-dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but direct hippocampal action of IL-1β causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Role of interleukin-1beta in postoperative cognitive dysfunction.

          Although postoperative cognitive dysfunction (POCD) often complicates recovery from major surgery, the pathogenic mechanisms remain unknown. We explored whether systemic inflammation, in response to surgical trauma, triggers hippocampal inflammation and subsequent memory impairment, in a mouse model of orthopedic surgery. C57BL/6J, knock out (lacking interleukin [IL]-1 receptor, IL-1R(-/-)) and wild type mice underwent surgery of the tibia under general anesthesia. Separate cohorts of animals were tested for memory function with fear conditioning tests, or euthanized at different times to assess levels of systemic and hippocampal cytokines and microglial activation; the effects of interventions, designed to interrupt inflammation (specifically and nonspecifically), were also assessed. Surgery caused hippocampal-dependent memory impairment that was associated with increased plasma cytokines, as well as reactive microgliosis and IL-1beta transcription and expression in the hippocampus. Nonspecific attenuation of innate immunity with minocycline prevented surgery-induced changes. Functional inhibition of IL-1beta, both in mice pretreated with IL-1 receptor antagonist and in IL-1R(-/-) mice, mitigated the neuroinflammatory effects of surgery and memory dysfunction. A peripheral surgery-induced innate immune response triggers an IL-1beta-mediated inflammatory process in the hippocampus that underlies memory impairment. This may represent a viable target to interrupt the pathogenesis of postoperative cognitive dysfunction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            One-year health care costs associated with delirium in the elderly population.

            While delirium has been increasingly recognized as a serious and potentially preventable condition, its long-term implications are not well understood. This study determined the total 1-year health care costs associated with delirium. Hospitalized patients aged 70 years and older who participated in a previous controlled clinical trial of a delirium prevention intervention at an academic medical center between 1995 and 1998 were followed up for 1 year after discharge. Total inflation-adjusted health care costs, calculated as either reimbursed amounts or hospital charges converted to costs, were computed by means of data from Medicare administrative files, hospital billing records, and the Connecticut Long-term Care Registry. Regression models were used to determine costs associated with delirium after adjusting for patient sociodemographic and clinical characteristics. During the index hospitalization, 109 patients (13.0%) developed delirium while 732 did not. Patients with delirium had significantly higher unadjusted health care costs and survived fewer days. After adjusting for pertinent demographic and clinical characteristics, average costs per day survived among patients with delirium were more than 2(1/2) times the costs among patients without delirium. Total cost estimates attributable to delirium ranged from $16 303 to $64 421 per patient, implying that the national burden of delirium on the health care system ranges from $38 billion to $152 billion each year. The economic impact of delirium is substantial, rivaling the health care costs of falls and diabetes mellitus. These results highlight the need for increased efforts to mitigate this clinically significant and costly disorder.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hippocampal synaptic plasticity, spatial memory and anxiety.

              Recent studies using transgenic mice lacking NMDA receptors in the hippocampus challenge the long-standing hypothesis that hippocampal long-term potentiation-like mechanisms underlie the encoding and storage of associative long-term spatial memories. However, it may not be the synaptic plasticity-dependent memory hypothesis that is wrong; instead, it may be the role of the hippocampus that needs to be re-examined. We present an account of hippocampal function that explains its role in both memory and anxiety.
                Bookmark

                Author and article information

                Contributors
                colm.cunningham@tcd.ie
                Journal
                Mol Psychiatry
                Mol. Psychiatry
                Molecular Psychiatry
                Nature Publishing Group UK (London )
                1359-4184
                1476-5578
                6 June 2018
                6 June 2018
                2019
                : 24
                : 10
                : 1533-1548
                Affiliations
                [1 ]ISNI 0000 0004 1936 9705, GRID grid.8217.c, School of Biochemistry and Immunology & Trinity College Institute of Neuroscience, ; Dublin 2, Ireland
                [2 ]ISNI 0000 0004 1936 9705, GRID grid.8217.c, Department of Physiology, , Trinity College Dublin, ; Dublin 2, Ireland
                [3 ]ISNI 0000 0004 1936 8948, GRID grid.4991.5, Department of Experimental Psychology, , University of Oxford, ; South Parks Road, Oxford, UK
                Author information
                http://orcid.org/0000-0003-1423-5209
                Article
                75
                10.1038/s41380-018-0075-8
                6510649
                29875474
                c468c790-1699-4b8d-950f-28438040af89
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 April 2017
                : 12 February 2018
                : 3 April 2018
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2019

                Molecular medicine
                neuroscience,physiology,psychology
                Molecular medicine
                neuroscience, physiology, psychology

                Comments

                Comment on this article