47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Quantitative Interpretation of Fossil Pollen Spectra: Dissimilarity Coefficients and the Method of Modern Analogs

      , ,
      Quaternary Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dissimilarity coefficients measure the difference between multivariate samples and provide a quantitative aid to the identification of modern analogs for fossil pollen samples. How eight coefficients responded to differences among modern pollen samples from eastern North America was tested. These coefficients represent three different classes: (1) unweighted coefficients that are most strongly influenced by large-valued pollen types, (2) equal-weight coefficients that weight all pollen types equally but can be too sensitive to variations among rare types, and (3) signal-to-noise coefficients that are intermediate in their weighting of pollen types. The studies with modern pollen allowed definition of critical values for each coefficient, which, when not exceeded, indicate that two pollen samples originate from the same vegetation region. Dissimilarity coefficients were used to compare modern and fossil pollen samples, and modern samples so similar to fossil samples were found that most of three late Quaternary pollen diagrams could be “reconstructed” by substituting modern samples for fossil samples. When the coefficients indicated that the fossil spectra had no modern analogs, then the reconstructed diagrams did not match all aspects of the originals. No modern analogs existed for samples from before 9300 yr B.P. at Kirchner Marsh, Minnesota, and from before 11,000 yr B.P. at Wintergreen Lake, Michigan, but modern analogs existed for almost all Holocene samples from these two sites and Brandreth Bog, New York.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          The Divergence and Bhattacharyya Distance Measures in Signal Selection

          T Kailath (1967)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Multidimensional scaling as a research tool in quaternary palynology: A review of theory and methods

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Changing Patterns in the Holocene Pollen Record of Northeastern North America: A Mapped Summary

              By mapping the data from 62 radiocarbon-dated pollen diagrams, this paper illustrates the Holocene history of four major vegetational regions in northeastern North America. Isopoll maps, difference maps, and isochrone maps are used in order to examine the changing patterns within the data set and to study broad-scale and long-term vegetational dynamics. Isopoll maps show the distributions of spruce (Picea), pine (Pinus), oak (Quercus), herb (nonarboreal pollen groups excluding Cyperaceae), and birch + maple + beech + hemlock (Betula, Acer, Fagus, Tsuga) pollen at specified times from 11,000 BP to present. Difference maps were constructed by subtracting successive isopoll maps and illustrate the changing patterns of pollen abundances from one time to the next. The isochrone maps portray the movement of ecotones and range limits by showing their positions at a sequence of times during the Holocene. After 11,000 BP, the broad region over which spruce pollen had dominated progressively shrank as the boreal forest zone was compressed between the retreating ice margin and the rapidly westward and northward expanding region where pine was the predominant pollen type. Simultaneously, the oak-pollen-dominated deciduous forest moved up from the south and the prairie expanded eastward. By 7000 BP, the prairie had attained its maximum eastward extent with the period of its most rapid expansion evident between 10,000 and 9000 BP. Many of the trends of the early Holocene were reversed after 7000 BP with the prairie retreating westward and the boreal and other zones edging southward. In the last 500 years, man's impact on the vegetation is clearly visible, especially in the greatly expanded region dominated by herb pollen. The large scale changes before 7000 BP probably reflect shifts in the macroclimatic patterns that were themselves being modified by the retreat and disintegration of the Laurentide ice sheet. Subsequent changes in the pollen and vegetation were less dramatic than those of the early Holocene.
                Bookmark

                Author and article information

                Journal
                applab
                Quaternary Research
                Quat. res.
                Elsevier BV
                0033-5894
                1096-0287
                January 1985
                January 2017
                : 23
                : 01
                : 87-108
                Article
                10.1016/0033-5894(85)90074-2
                c4696120-9556-4059-bbd0-1856cc935713
                © 1985

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article