126
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A One Pot, One Step, Precision Cloning Method with High Throughput Capability

      research-article
      , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Current cloning technologies based on site-specific recombination are efficient, simple to use, and flexible, but have the drawback of leaving recombination site sequences in the final construct, adding an extra 8 to 13 amino acids to the expressed protein. We have devised a simple and rapid subcloning strategy to transfer any DNA fragment of interest from an entry clone into an expression vector, without this shortcoming. The strategy is based on the use of type IIs restriction enzymes, which cut outside of their recognition sequence. With proper design of the cleavage sites, two fragments cut by type IIs restriction enzymes can be ligated into a product lacking the original restriction site. Based on this property, a cloning strategy called ‘Golden Gate’ cloning was devised that allows to obtain in one tube and one step close to one hundred percent correct recombinant plasmids after just a 5 minute restriction-ligation. This method is therefore as efficient as currently used recombination-based cloning technologies but yields recombinant plasmids that do not contain unwanted sequences in the final construct, thus providing precision for this fundamental process of genetic manipulation.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium.

          We have developed an efficient, versatile, and user-friendly viral engineering and expression system that is based on in planta assembly of functional viral vectors from separate pro-vector modules. With this new system, instead of supplying a plant cell with a complete viral vector as a mature viral particle, an RNA or a linear DNA molecule, we use agrobacteria to deliver various modules that are assembled inside the cell with the help of a site-specific recombinase. The resulting DNA is transcribed, and undesired elements such as recombination sites are spliced out, generating a fully functional RNA replicon. The proposed protocol allows us, by simply treating a plant with a mixture of two or more agrobacteria carrying specific prefabricated modules, to rapidly and inexpensively assemble and test multiple vector/gene combinations, without the need to perform the various engineering steps normally required with alternative protocols. The process described here is very fast (expression requires 3-4 days); it provides very high protein yield (up to 80% of total soluble protein); more than before, it is carried out using in vivo manipulations; it is based on prefabricated genetic modules that can be developed/upgraded independently; and it is inherently scalable.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Seamless cloning and gene fusion

            Quinn Lu (2005)
            Gene fusion technology is a key tool in facilitating gene function studies. Hybrid molecules in which all the components are joined precisely, without the presence of intervening and unwanted extraneous sequences, enable accurate studies of molecules and the characterization of individual components. This article reviews situations in which seamlessly fused genes and proteins are required or desired and describes molecular approaches that are available for generating these hybrid molecules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Class-IIS restriction enzymes--a review.

              Class-IIS restriction enzymes (ENases-IIS) interact with two discrete sites on double-stranded DNA: the recognition site, which is 4-7 bp long, and the cleavage site, usually 1-20 bp away from the recognition site. The recognition sequences of ENases-IIS are totally (or partially) asymmetric and all of the characterized ENases-IIS are monomeric. A total of 35 ENases-IIS are described (80, if all isoschizomers are taken into consideration) together with ten related ENases (class IIT), and 15 cognate methyltransferases (MTases-IIS). The physical, chemical, and molecular properties of the ENases-IIS and MTases-IIS are reviewed and many unique applications of this class of enzymes are described, including: precise trimming of DNA; retrieval of cloned fragments; gene assembly; use as a universal restriction enzyme; cleavage of single-stranded DNA; detection of point mutations; tandem amplification; printing-amplification reaction; and localization of methylated bases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                5 November 2008
                : 3
                : 11
                : e3647
                Affiliations
                [1]Icon Genetics GmbH, Biozentrum Halle, Halle, Germany
                Cairo University, Egypt
                Author notes

                Conceived and designed the experiments: SM. Performed the experiments: CE RK. Wrote the paper: CE SM.

                Article
                08-PONE-RA-06082R1
                10.1371/journal.pone.0003647
                2574415
                18985154
                c49baf6d-838b-417b-b8d2-d146cd9d74b4
                Engler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 August 2008
                : 20 October 2008
                Page count
                Pages: 7
                Categories
                Research Article
                Biotechnology
                Molecular Biology
                Biotechnology/Plant Biotechnology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article