47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Origin of Glucocorticoid Hormone Oscillations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Characterization of a peripheral hormonal system identifies the origin and mechanisms of regulation of glucocorticoid hormone oscillations in rats.

          Abstract

          Oscillating levels of adrenal glucocorticoid hormones are essential for optimal gene expression, and for maintaining physiological and behavioural responsiveness to stress. The biological basis for these oscillations is not known, but a neuronal “pulse generator” within the hypothalamus has remained a popular hypothesis. We demonstrate that pulsatile hypothalamic activity is not required for generating ultradian glucocorticoid oscillations. We show that a constant level of corticotrophin-releasing hormone (CRH) can activate a dynamic pituitary-adrenal peripheral network to produce ultradian adrenocorticotrophic hormone and glucocorticoid oscillations with a physiological frequency. This oscillatory response to CRH is dose dependent and becomes disrupted for higher levels of CRH. These data suggest that glucocorticoid oscillations result from a sub-hypothalamic pituitary-adrenal system, which functions as a deterministic peripheral hormone oscillator with a characteristic ultradian frequency. This constitutes a novel mechanism by which the level, rather than the pattern, of CRH determines the dynamics of glucocorticoid hormone secretion.

          Author Summary

          Glucocorticoid steroid hormones, such as cortisol and corticosterone, provide a rapid response to both physical and psychological stress, and act on areas of the brain that influence learning, memory, and behaviour. Glucocorticoids are released from the adrenal glands in near-hourly pulses, which results in oscillating glucocorticoid levels in the blood and in target organs. These hormone oscillations can become disrupted during ageing and in stress-related disease (e.g., major depression), so it is important to identify the underlying mechanisms that govern their dynamics. Although the origin of the oscillations is not known, it is assumed that they are generated by a neuronal “pulse generator” within the brain. In this study, we present data that challenge this hypothesis. We characterize a peripheral hormonal system and show that constant levels of corticotrophin-releasing hormone can induce and regulate hormone oscillations independent of the brain. We also describe mechanisms that can disrupt these oscillations. These findings have important implications for our understanding of glucocorticoid signalling in both health and disease, and will be important for the design of novel treatment strategies that take into account timing of hormone administration to patients undergoing steroid therapy for inflammatory or malignant disease.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation.

          Two receptor systems for corticosterone (CORT) can be distinguished in rat brain: mineralocorticoid-like or CORT receptors (CR) and glucocorticoid receptors (GR). The microdistribution and extent of occupation of each receptor population by CORT were studied. The CR system is restricted predominantly to the lateral septum and hippocampus. Within the hippocampus, the highest density occurs in the subiculum +/- CA1 cell field (144 fmol/mg protein) and the dentate gyrus (104 fmol/mg protein). Affinity of CR for CORT was very high (Kd, approximately 0.5 nM). The GR system has a more widespread distribution in the brain. The highest density for GR is in the lateral septum (195 fmol/mg protein), the dentate gyrus (133 fmol/mg protein), the nucleus tractus solitarii and central amygdala. Substantial amounts of GR are present in the paraventricular nucleus and locus coeruleus and low amounts in the raphe area and the subiculum + CA1 cell field. The affinity of GR for CORT (Kd, approximately 2.5-5 nM) was 6- to 10-fold lower than that of CR. Occupation of CR by endogenous ligand was 89.5% during morning trough levels of pituitary-adrenal activity (plasma CORT, 1.4 micrograms/100 ml). Similar levels of occupation (88.7% and 97.6%) were observed at the diurnal peak (plasma CORT, 27 micrograms/100 ml) and after 1 h of restraint stress (plasma CORT, 25 micrograms/100 ml), respectively. Furthermore, a dose of 1 microgram CORT/100 g BW, sc, resulted in 80% CORT receptor occupation, whereas GR were not occupied. For 50% occupation of GR, doses needed to be increased to 50-100 micrograms/100 g BW, and for 95% occupation, a dose of 1 mg CORT was required. The plasma CORT level at the time of half-maximal GR occupation was about 25 micrograms/100 ml, which is in the range of levels attained after stress or during the diurnal peak of pituitary-adrenal activity. Thus, CR are extensively filled (greater than 90%) with endogenous CORT under most circumstances, while GR become occupied concurrent with increasing plasma CORT concentrations due to stress or diurnal rhythm. We conclude that CORT action via CR may be involved in a tonic (permissive) influence on brain function with the septohippocampal complex as a primary target. In view of the almost complete occupation of CR by endogenous hormones, the regulation of the CORT signal via CR will, most likely, be by alterations in the number of such receptors. In contrast, CORT action via GR is involved in its feedback action on stress-activated brain mechanisms, and GR occur widely in the brain.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis.

            This article defines stress and related concepts and reviews their historical development. The notion of a stress system as the effector of the stress syndrome is suggested, and its physiologic and pathophysiologic manifestations are described. A new perspective on human disease states associated with dysregulation of the stress system is provided. Published original articles from human and animal studies and selected reviews. Literature was surveyed utilizing MEDLINE and the Index Medicus. Original articles from the basic science and human literature consisted entirely of controlled studies based on verified methodologies and, with the exception of the most recent studies, replicated by more than one laboratory. Many of the basic science and clinical studies had been conducted in our own laboratories and clinical research units. Reviews cited were written by acknowledged leaders in the fields of neurobiology, endocrinology, and behavior. Independent extraction and cross-referencing by the authors. Stress and related concepts can be traced as far back as written science and medicine. The stress system coordinates the generalized stress response, which takes place when a stressor of any kind exceeds a threshold. The main components of the stress system are the corticotropin-releasing hormone and locus ceruleus-norepinephrine/autonomic systems and their peripheral effectors, the pituitary-adrenal axis, and the limbs of the autonomic system. Activation of the stress system leads to behavioral and peripheral changes that improve the ability of the organism to adjust homeostasis and increase its chances for survival. There has been an exponential increase in knowledge regarding the interactions among the components of the stress system and between the stress system and other brain elements involved in the regulation of emotion, cognitive function, and behavior, as well as with the axes responsible for reproduction, growth, and immunity. This new knowledge has allowed association of stress system dysfunction, characterized by sustained hyperactivity and/or hypoactivity, to various pathophysiologic states that cut across the traditional boundaries of medical disciplines. These include a range of psychiatric, endocrine, and inflammatory disorders and/or susceptibility to such disorders. We hope that knowledge from apparently disparate fields of science and medicine integrated into a working theoretical framework will allow generation and testing of new hypotheses on the pathophysiology and diagnosis of, and therapy for, a variety of human illnesses reflecting systematic alterations in the principal effectors of the generalized stress response. We predict that pharmacologic agents capable of altering the central apparatus that governs the stress response will be useful in the treatment of many of these illnesses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An advanced detrending method with application to HRV analysis.

              An advanced, simple to use, detrending method to be used before heart rate variability analysis (HRV) is presented. The method is based on smoothness priors approach and operates like a time-varying finite-impulse response high-pass filter. The effect of the detrending on time- and frequency-domain analysis of HRV is studied.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                June 2012
                June 2012
                5 June 2012
                : 10
                : 6
                : e1001341
                Affiliations
                [1 ]Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
                [2 ]Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
                [3 ]College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
                University of Cambridge, United Kingdom
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: JJW FS EW JRT SLL. Performed the experiments: JJW FS EW ZZ YK. Analyzed the data: JJW FS. Wrote the paper: JJW FS JRT SLL.

                Article
                PBIOLOGY-D-11-04554
                10.1371/journal.pbio.1001341
                3367982
                22679394
                c49c0365-7dbd-49ad-b392-182a78f9f766
                Walker et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 November 2011
                : 20 April 2012
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Computational Biology
                Neuroscience
                Neurophysiology
                Homeostatic Mechanisms
                Neural Homeostasis
                Systems Biology
                Theoretical Biology
                Mathematics
                Applied Mathematics
                Nonlinear Dynamics
                Medicine
                Anatomy and Physiology
                Endocrinology
                Endocrine Physiology
                Endocrine Cells
                Endocrine Glands
                Hormones
                Neuroendocrinology
                Pituitary
                Neuroendocrinology

                Life sciences
                Life sciences

                Comments

                Comment on this article