2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Response of soil chemical properties and enzyme activity of four species in the Three Gorges Reservoir area to simulated acid rain

      , , , ,
      Ecotoxicology and Environmental Safety
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Stoichiometry of soil enzyme activity at global scale.

          Extracellular enzymes are the proximate agents of organic matter decomposition and measures of these activities can be used as indicators of microbial nutrient demand. We conducted a global-scale meta-analysis of the seven-most widely measured soil enzyme activities, using data from 40 ecosystems. The activities of beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-N-acetylglucosaminidase and phosphatase g(-1) soil increased with organic matter concentration; leucine aminopeptidase, phenol oxidase and peroxidase activities showed no relationship. All activities were significantly related to soil pH. Specific activities, i.e. activity g(-1) soil organic matter, also varied in relation to soil pH for all enzymes. Relationships with mean annual temperature (MAT) and precipitation (MAP) were generally weak. For hydrolases, ratios of specific C, N and P acquisition activities converged on 1 : 1 : 1 but across ecosystems, the ratio of C : P acquisition was inversely related to MAP and MAT while the ratio of C : N acquisition increased with MAP. Oxidative activities were more variable than hydrolytic activities and increased with soil pH. Our analyses indicate that the enzymatic potential for hydrolyzing the labile components of soil organic matter is tied to substrate availability, soil pH and the stoichiometry of microbial nutrient demand. The enzymatic potential for oxidizing the recalcitrant fractions of soil organic material, which is a proximate control on soil organic matter accumulation, is most strongly related to soil pH. These trends provide insight into the biogeochemical processes that create global patterns in ecological stoichiometry and organic matter storage.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Phenol oxidase, peroxidase and organic matter dynamics of soil

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acid rain on Acid soil: a new perspective.

              Acid rain is widely believed to be responsible for acidifying soil and water in areas of North America and northern Europe. However, factors commonly considered to make landscapes susceptible to acidification by acid rain are the same factors long known to strongly acidify soils through the natural processes of soil formation. Recovery from extreme and widespread careless land use has also occurred in regions undergoing acidification. There is evidence that acidification by acid rain is superimposed on long-term acidification induced by changes in land use and consequent vegetative succession. Thus, the interactions of acid rain, acid soil, and vegetation need to be carefully examined on a watershed basis in assessing benefits expected from proposed reductions in emissions of oxides of sulfur and nitrogen.
                Bookmark

                Author and article information

                Journal
                Ecotoxicology and Environmental Safety
                Ecotoxicology and Environmental Safety
                Elsevier BV
                01476513
                January 2021
                January 2021
                : 208
                : 111457
                Article
                10.1016/j.ecoenv.2020.111457
                c4a4b88a-6750-4386-be79-d15743f469b8
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article