6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Expressed sequence tags 454 sequencing and biomineralization gene expression for pearl sac of the pearl oyster,Pinctada fucata martensii

      , , , , ,
      Aquaculture Research
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SSAHA: a fast search method for large DNA databases.

            We describe an algorithm, SSAHA (Sequence Search and Alignment by Hashing Algorithm), for performing fast searches on databases containing multiple gigabases of DNA. Sequences in the database are preprocessed by breaking them into consecutive k-tuples of k contiguous bases and then using a hash table to store the position of each occurrence of each k-tuple. Searching for a query sequence in the database is done by obtaining from the hash table the "hits" for each k-tuple in the query sequence and then performing a sort on the results. We discuss the effect of the tuple length k on the search speed, memory usage, and sensitivity of the algorithm and present the results of computational experiments which show that SSAHA can be three to four orders of magnitude faster than BLAST or FASTA, while requiring less memory than suffix tree methods. The SSAHA algorithm is used for high-throughput single nucleotide polymorphism (SNP) detection and very large scale sequence assembly. Also, it provides Web-based sequence search facilities for Ensembl projects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An acidic matrix protein, Pif, is a key macromolecule for nacre formation.

              The mollusk shell is a hard tissue consisting of calcium carbonate crystals and an organic matrix. The nacre of the shell is characterized by a stacked compartment structure with a uniformly oriented c axis of aragonite crystals in each compartment. Using a calcium carbonate-binding assay, we identified an acidic matrix protein, Pif, in the pearl oyster Pinctada fucata that specifically binds to aragonite crystals. The Pif complementary DNA (cDNA) encoded a precursor protein, which was posttranslationally cleaved to produce Pif 97 and Pif 80. The results from immunolocalization, a knockdown experiment that used RNA interference, and in vitro calcium carbonate crystallization studies strongly indicate that Pif regulates nacre formation.
                Bookmark

                Author and article information

                Journal
                Aquaculture Research
                Aquac Res
                Wiley-Blackwell
                1355557X
                March 2015
                March 21 2015
                : 46
                : 3
                : 745-758
                Article
                10.1111/are.12227
                c4b7cf1a-aff2-4f0f-b605-0800c30b0683
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article