8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacokinetics of Anthraquinones from Medicinal Plants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anthraquinones are bioactive natural products, some of which are active components in medicinal medicines, especially Chinese medicines. These compounds exert actions including purgation, anti-inflammation, immunoregulation, antihyperlipidemia, and anticancer effects. This study aimed to review the pharmacokinetics (PKs) of anthraquinones, which are importantly associated with their pharmacological and toxicological effects. Anthraquinones are absorbed mainly in intestines. The absorption rates of free anthraquinones are faster than those of their conjugated glycosides because of the higher liposolubility. A fluctuation in blood concentration and two absorption peaks of anthraquinones may result from the hepato-intestinal circulation, reabsorption, and transformation. Anthraquinones are widely distributed throughout the body, mainly in blood-flow rich organs and tissues, such as blood, intestines, stomach, liver, lung, kidney, and fat. The metabolic pathways of anthraquinones are hydrolysis, glycuronidation, sulfation, methylation/demethylation, hydroxylation/dehydroxylation, oxidation/reduction (hydrogenation), acetylation and esterification by intestinal flora and liver metabolic enzymes, among which hydrolysis, glycuronidation and sulfation are dominant. Of note, anthraquinones can be transformed into each other. The main excretion routes for anthraquinones are the kidney, recta, and gallbladder. Conclusion: Some anthraquinones and their glycosides, such as aloe-emodin, chrysophanol, emodin, physcion, rhein and sennosides, have attracted the most PK research interest due to their more biological activities and/or detectability. Anthraquinones are mainly absorbed in the intestines and are mostly distributed in blood flow-rich tissues and organs. Transformation into another anthraquinone may increase the blood concentration of the latter, leading to an increased pharmacological and/or toxicological effect. Drug-drug interactions influencing PK may provide insights into drug compatibility theory to enhance or reduce pharmacological/toxicological effects in Chinese medicine formulae and deserve deep investigation.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: A review

          Ethnopharmacological relevance Polygonum multiflorum Thunb., which is known as Heshouwu (何首乌 in Chinese) in China. It is traditionally valued and reported for hair-blacking, liver and kidney-tonifying and anti-aging effects as well as low toxicity. The aim of this review is to provide comprehensive information on the botany, traditional uses, phytochemistry, pharmacological research and toxicology of Polygonum multiflorum, based on the scientific literature. Moreover, trends and perspectives for future investigation of this plant are discussed. It will build up a new foundation for further study on Polygonum multiflorum. Materials and methods A systematic review of the literature on Polygonum multiflorum was performed using several resources, including classic books on Chinese herbal medicine and various scientific databases, such as PubMed, SciFinder, the Web of Science, Science Direct, China Knowledge Resource Integrated (CNKI). Results Polygonum multiflorum is widely distributed throughout the world and has been used as a traditional medicine for centuries in China. The ethnomedical uses of Polygonum multiflorum have been recorded in many provinces of China and Japan for nine species of adulterants in six families. More than 100 chemical compounds have been isolated from this plant, and the major components have been determined to be stilbenes, quinones, flavonoids and others. Crude extracts and pure compounds of this plant are used as effective agents in pre-clinical and clinical practice due to their anti-aging, anti-hyperlipidaemia, anti-cancer and anti-inflammatory effects and to promote immunomodulation, neuroprotection, and the curing of other diseases. However, these extracts can also lead to hepatotoxicity, nephrotoxicity and embryonic toxicity. Pharmacokinetic studies have demonstrated that the main components of Polygonum multiflorum, such as 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucopyranoside and emodin are distributed among many organs and tissues. Conclusion Therapeutic potential of Polygonum multiflorum has been demonstrated in the conditions like Alzheimer׳s disease, Parkinson׳s disease, hyperlipidaemia, inflammation and cancer, which is attributed to the presence of various stilbenes, quinones, flavonoids, phospholipids and other compounds in the drug. On the other hand, the adverse effects (hepatotoxicity, nephrotoxicity, and embryonic toxicity) of this plant were caused by the quinones, such as emodin and rhein. Thus more pharmacological and toxicological mechanisms on main active compounds are necessary to be explored, especially the combined anthraquinones (Emodin-8-O-β-d-glucopyranoside, Physcion-8-O-β-d-glucopyranoside, etc.) and the variety of stilbenes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Involvement of PI3K/Akt, ERK and p38 signaling pathways in emodin-mediated extrinsic and intrinsic human hepatoblastoma cell apoptosis.

            As a natural anthraquinone derivative, 1,3,8-trihydroxy-6-methylanthraquinone, known as emodin, has recently been reported to possess potential chemopreventive capacity, but the underlying molecular mechanism of its hepatocyte toxicity remains poorly clarified. The present research indicated that emodin targeted HepG2 cells without being cytotoxic to primary human hepatocyte cells in comparison with chrysophanol and rhein. The anti-proliferative effect of emodin was ascribed to occurrence of apoptosis, which characterized by higher ethidium bromide signal, brighter DAPI fluorescence, cleavages of procaspase-3 and poly (ADP-ribose) polymerase as well as quantitative result from Annexin V-FITC/PI double staining. Furthermore, emodin improved Bax/Bcl-2 ratio, elicited disruption of mitochondrial membrane potential and promoted efflux of cytochrome c to cytosol, indicative of features of mitochondria-dependent apoptotic signals. Emodin concurrently led to activations of Fas, Fas-L, caspase-8 and tBid, which provoked death receptor apoptotic signals. Notably, activated tBid relayed the Fas apoptotic signal to the mitochondrial pathway. Besides, emodin effectively attenuated phosphorylations of Akt and ERK and promoted phosphorylation of p38. Inhibitions of PI3K/Akt and ERK and activation of p38 mediated emodin-induced apoptosis through modulating the mitochondrial pathway and/or death receptor pathway. Additionally, there was a cross-talk between PI3K/Akt and MAPKs pathways in emodin-induced apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of serum bile acid profiles as biomarkers of liver injury in rodents.

              Bile acids (BAs) have been studied as potential biomarkers of drug-induced liver injury. However, the relationship between levels of individual BAs and specific forms of liver injury remains to be fully understood. Thus, we set out to evaluate cholic acid (CA), glycocholic acid (GCA), and taurocholic acid (TCA) as potential biomarkers of liver injury in rodent toxicity studies. We have developed a sensitive liquid chromatography-tandem mass spectrometry (LC/MS/MS) assay applicable to rat and mouse serum and evaluated levels of the individual BAs in comparison with the classical biomarkers of hepatotoxicity (alanine aminotransferase [ALT], aspartate aminotransferase [AST], glutamate dehydrogenase (GLDH), alkaline phosphatase, total bilirubin, gamma-glutamyl transferase, and total BAs) and histopathology findings in animals treated with model toxicants. The pattern of changes in the individual BAs varied with different forms of liver injury. Animals with histopathologic signs of hepatocellular necrosis showed increases in all 3 BAs tested, as well as increases in ALT, AST, GLDH, and total BAs. Animals with histopathologic signs of bile duct hyperplasia (BDH) displayed increases in only conjugated BAs (GCA and TCA), a pattern not observed with the other toxicants. Because BDH is detectable only via histopathology, our results indicate the potential diagnostic value of examining individual BAs levels in serum as biomarkers capable of differentiating specific forms of liver injury in rodent toxicity studies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                15 April 2021
                2021
                : 12
                : 638993
                Affiliations
                [ 1 ]Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
                [ 2 ]Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research and School of Pharmacy, Hubei University of Medicine, Shiyan, China
                [ 3 ]Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
                [ 4 ]School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
                Author notes

                Edited by: Haitao Lu, Shanghai Jiao Tong University, China

                Reviewed by: Hongtao Liu, Hubei University of Chinese Medicine, China

                Ying-yuan Lu, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, China

                *Correspondence: Xuanbin Wang, wangxb@ 123456hbmu.edu.cn ; Hongliang Li, hongliangli@ 123456hbmu.edu.cn
                [#]

                These authors have contributed equally to this work

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                Article
                638993
                10.3389/fphar.2021.638993
                8082241
                33935728
                c4bae202-d672-4412-b377-e0aff74c13ba
                Copyright © 2021 Wang, Wang, Yu, Cao, Cai, Chen, Li, Feng, Li and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 December 2020
                : 03 February 2021
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                anthraquinones,pharmacokinetics,chinese medicines,natural products,medicinal plant

                Comments

                Comment on this article