169
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Coronaviruses post-SARS: update on replication and pathogenesis

      review-article
      ,
      Nature Reviews. Microbiology
      Nature Publishing Group UK

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Key Points

          • Coronaviruses are positive strand RNA viruses that cause disease in humans, and domestic and companion animals. They are most notorious for causing severe acute respiratory syndrome (SARS) outbreaks in 2002–2003. All coronaviruses follow the same basic strategy of replication.

          • All coronaviruses encode 15 or 16 replicase related proteins, 4 or 5 structural proteins and 1–8 group-specific or accessory proteins. Many of the replicase proteins are assembled into replication machinery in double-membrane vesicles (DMVs) and on a reticular network of membranes that are derived from the endoplasmic reticulum.

          • Coronaviruses are readily transmitted across species. This phenomenon was illustrated when the SARS-coronavirus crossed species from bats to intermediate hosts, such as palm civets, and then to humans. It also explains the large number of species, including humans, that are infected with viruses closely related to bovine coronavirus.

          • In many coronavirus infections, disease severity increases during virus clearance, suggesting that the host immune response is both protective and pathogenic. Furthermore, inhibition of specific aspects of the immune response results in less severe disease and less tissue destruction, without diminishing the kinetics of virus clearance.

          • Like all successful viruses, coronaviruses have evolved both passive and active mechanisms to evade the interferon response. Replication in DMVs may contribute to passive evasion of the innate immune response by making double-stranded RNA inaccessible to cellular sensors.

          Abstract

          Coronaviruses gained prominence during the SARS outbreaks of 2002–2003, but there are many different coronaviruses that infect humans and animals. Perlman and Netland describe the biology of the coronaviruses, including their replication, host immune response and interspecies transmission.

          Abstract

          Although coronaviruses were first identified nearly 60 years ago, they only received notoriety in 2003 when one of their members was identified as the aetiological agent of severe acute respiratory syndrome. Previously these viruses were known to be important agents of respiratory and enteric infections of domestic and companion animals and to cause approximately 15% of all cases of the common cold. This Review focuses on recent advances in our understanding of the mechanisms of coronavirus replication, interactions with the host immune response and disease pathogenesis. It also highlights the recent identification of numerous novel coronaviruses and the propensity of this virus family to cross species barriers.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China.

          Y Guan (2003)
          A novel coronavirus (SCoV) is the etiological agent of severe acute respiratory syndrome (SARS). SCoV-like viruses were isolated from Himalayan palm civets found in a live-animal market in Guangdong, China. Evidence of virus infection was also detected in other animals (including a raccoon dog, Nyctereutes procyonoides) and in humans working at the same market. All the animal isolates retain a 29-nucleotide sequence that is not found in most human isolates. The detection of SCoV-like viruses in small, live wild mammals in a retail market indicates a route of interspecies transmission, although the natural reservoir is not known.
            • Record: found
            • Abstract: found
            • Article: not found

            Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats.

            Although the finding of severe acute respiratory syndrome coronavirus (SARS-CoV) in caged palm civets from live animal markets in China has provided evidence for interspecies transmission in the genesis of the SARS epidemic, subsequent studies suggested that the civet may have served only as an amplification host for SARS-CoV. In a surveillance study for CoV in noncaged animals from the wild areas of the Hong Kong Special Administration Region, we identified a CoV closely related to SARS-CoV (bat-SARS-CoV) from 23 (39%) of 59 anal swabs of wild Chinese horseshoe bats (Rhinolophus sinicus) by using RT-PCR. Sequencing and analysis of three bat-SARS-CoV genomes from samples collected at different dates showed that bat-SARS-CoV is closely related to SARS-CoV from humans and civets. Phylogenetic analysis showed that bat-SARS-CoV formed a distinct cluster with SARS-CoV as group 2b CoV, distantly related to known group 2 CoV. Most differences between the bat-SARS-CoV and SARS-CoV genomes were observed in the spike genes, ORF 3 and ORF 8, which are the regions where most variations also were observed between human and civet SARS-CoV genomes. In addition, the presence of a 29-bp insertion in ORF 8 of bat-SARS-CoV genome, not in most human SARS-CoV genomes, suggests that it has a common ancestor with civet SARS-CoV. Antibody against recombinant bat-SARS-CoV nucleocapsid protein was detected in 84% of Chinese horseshoe bats by using an enzyme immunoassay. Neutralizing antibody to human SARS-CoV also was detected in bats with lower viral loads. Precautions should be exercised in the handling of these animals.
              • Record: found
              • Abstract: found
              • Article: not found

              Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs.

              A novel coronavirus has been identified as the causative agent of severe acute respiratory syndrome (SARS). The viral main proteinase (Mpro, also called 3CLpro), which controls the activities of the coronavirus replication complex, is an attractive target for therapy. We determined crystal structures for human coronavirus (strain 229E) Mpro and for an inhibitor complex of porcine coronavirus [transmissible gastroenteritis virus (TGEV)] Mpro, and we constructed a homology model for SARS coronavirus (SARS-CoV) Mpro. The structures reveal a remarkable degree of conservation of the substrate-binding sites, which is further supported by recombinant SARS-CoV Mpro-mediated cleavage of a TGEV Mpro substrate. Molecular modeling suggests that available rhinovirus 3Cpro inhibitors may be modified to make them useful for treating SARS.

                Author and article information

                Contributors
                stanley-perlman@uiowa.edu
                Journal
                Nat Rev Microbiol
                Nat. Rev. Microbiol
                Nature Reviews. Microbiology
                Nature Publishing Group UK (London )
                1740-1526
                1740-1534
                11 May 2009
                2009
                : 7
                : 6
                : 439-450
                Affiliations
                GRID grid.214572.7, ISNI 0000 0004 1936 8294, Department of Microbiology and Interdisciplinary Program in Immunology, , University of Iowa, ; Iowa City, 52242 Iowa USA
                Article
                BFnrmicro2147
                10.1038/nrmicro2147
                2830095
                19430490
                c4c4b691-cee7-4119-8ea7-933c79050382
                © Nature Publishing Group 2009

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2009

                Comments

                Comment on this article

                Related Documents Log