6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Faecal microbiota and functional capacity associated with weaning weight in meat rabbits

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Weaning weight is an important economic trait in the meat rabbit industry. Evidence has linked the gut microbiota to health and production performance in rabbits. However, the effect of gut microbiota on meat rabbit weaning weight remains unclear. In this study, we performed 16S rRNA gene sequencing analysis of 135 faecal samples from commercial Ira rabbits. We detected 50 OTUs significantly associated with weaning weight. OTUs that showed positive associations with weaning weight were mostly members of the family Ruminococcaceae which are important in degrading dietary fibres and producing butyrate. On the contrary, OTUs annotated to genera Blautia, Lachnoclostridium and Butyricicoccus correlated with fat deposition were negatively associated with weaning weight. Predicted functional capacity analysis revealed that 91 KOs and 26 KEGG pathways exhibited potential correlations with weaning weight. We found that gut microbiota involved in the metabolism of amino acids, butanoate, energy and monosaccharides affected weaning weight. Additionally, cross‐validation analysis indicated that 16.16% of the variation in weaning weight was explained by the gut microbiome. Our findings provide important information to improve weaning weight of meat rabbits by modulating their gut microbiome.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation.

            Short chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are produced at high concentration by bacteria in the gut and subsequently released in the bloodstream. Basal acetate concentrations in the blood (about 100 microm) can further increase to millimolar concentrations following alcohol intake. It was known previously that SCFAs can activate leukocytes, particularly neutrophils. In the present work, we have identified two previously orphan G protein-coupled receptors, GPR41 and GPR43, as receptors for SCFAs. Propionate was the most potent agonist for both GPR41 and GPR43. Acetate was more selective for GPR43, whereas butyrate and isobutyrate were more active on GPR41. The two receptors were coupled to inositol 1,4,5-trisphosphate formation, intracellular Ca2+ release, ERK1/2 activation, and inhibition of cAMP accumulation. They exhibited, however, a differential coupling to G proteins; GPR41 coupled exclusively though the Pertussis toxin-sensitive Gi/o family, whereas GPR43 displayed a dual coupling through Gi/o and Pertussis toxin-insensitive Gq protein families. The broad expression profile of GPR41 in a number of tissues does not allow us to infer clear hypotheses regarding its biological functions. In contrast, the highly selective expression of GPR43 in leukocytes, particularly polymorphonuclear cells, suggests a role in the recruitment of these cell populations toward sites of bacterial infection. The pharmacology of GPR43 matches indeed the effects of SCFAs on neutrophils, in terms of intracellular Ca2+ release and chemotaxis. Such a neutrophil-specific SCFA receptor is potentially involved in the development of a variety of diseases characterized by either excessive or inefficient neutrophil recruitment and activation, such as inflammatory bowel diseases or alcoholism-associated immune depression. GPR43 might therefore constitute a target allowing us to modulate immune responses in these pathological situations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota.

              Resveratrol and quercetin, widely found in foods and vegetables, are plant polyphenols reported to have a wide range of biological activities. Despite their limited bioavailabilities, both resveratrol and quercetin are known to exhibit anti-inflammation and anti-obesity effects. We hypothesized that gut microbiota may be a potential target for resveratrol and quercetin to prevent the development of obesity. The aim of this research was to confirm whether a combination of quercetin and resveratrol (CQR) could restore the gut microbiota dysbiosis induced by a high-fat diet (HFD). In this study, Wistar rats were divided into three groups: a normal diet (ND) group, a HFD group and a CQR group. The CQR group was treated with a HFD and administered with a combination of quercetin [30 mg per kg body weight (BW) per day] and resveratrol [15 mg per kg body weight (BW) per day] by oral gavage. At the end of 10 weeks, CQR reduced the body weight gain and visceral (epididymal, perirenal) adipose tissue weight. Moreover, CQR also reduced serum lipids, attenuated serum inflammatory markers [interleukin (IL)-6, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1] and reversed serum biochemical parameters (adiponectin, insulin, leptin, etc.). Importantly, our results demonstrated that CQR could modulate the gut microbiota composition. 16S rRNA gene sequencing revealed that CQR had an impact on gut microbiota, decreasing Firmicutes (P < 0.05) and the proportion of Firmicutes to Bacteroidetes (P = 0.052). CQR also significantly inhibited the relative abundance of Desulfovibrionaceae (P < 0.01), Acidaminococcaceae (P < 0.05), Coriobacteriaceae (P < 0.05), Bilophila (P < 0.05), Lachnospiraceae (P < 0.05) and its genus Lachnoclostridium (P < 0.001), which were reported to be potentially related to diet-induced obesity. Moreover, compared with the HFD group, the relative abundance of Bacteroidales_S24-7_group (P < 0.01), Christensenellaceae (P < 0.001), Akkermansia (P < 0.01), Ruminococcaceae (P < 0.01) and its genera Ruminococcaceae_UCG-014 (P < 0.01), and Ruminococcaceae_UCG-005 (P < 0.01), which were reported to have an effect of relieving HFD-induced obesity, was markedly increased in the CQR group. Overall, these results indicated that administration of CQR may have beneficial effects on ameliorating HFD-induced obesity and reducing HFD-induced gut microbiota dysbiosis.
                Bookmark

                Author and article information

                Contributors
                tfxiao@fafu.edu.cn
                ganning707@163.com
                Journal
                Microb Biotechnol
                Microb Biotechnol
                10.1111/(ISSN)1751-7915
                MBT2
                Microbial Biotechnology
                John Wiley and Sons Inc. (Hoboken )
                1751-7915
                01 October 2019
                November 2019
                : 12
                : 6 , Thematic Issue on Fungal Biotechnology ( doiID: 10.1111/mbt2.v12.6 )
                : 1441-1452
                Affiliations
                [ 1 ] College of Animal Science Fujian Agriculture and Forestry University Fuzhou China
                [ 2 ] College of Life Science Fujian Agriculture and Forestry University Fuzhou China
                Author notes
                [*] [* ] For correspondence. *E‐mails tfxiao@ 123456fafu.edu.cn ; **E-mail ganning707@ 123456163.com ; Tel. +86 591 83759952; Fax +86 591 83759952.

                [†]

                These authors contributed equally to this work.

                Article
                MBT213485
                10.1111/1751-7915.13485
                6801154
                31571427
                c4c66c82-95eb-4065-8913-072e342153fd
                © 2019 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 08 May 2019
                : 15 May 2019
                : 15 August 2019
                Page count
                Figures: 6, Tables: 0, Pages: 12, Words: 7507
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                mbt213485
                November 2019
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.7.0 mode:remove_FC converted:20.10.2019

                Biotechnology
                Biotechnology

                Comments

                Comment on this article