46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Curcumin and cancer cells: how many ways can curry kill tumor cells selectively?

      The AAPS Journal
      Antineoplastic Agents, pharmacology, Cell Death, drug effects, Curcumin, Humans, Neoplasms, enzymology, metabolism, pathology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer is a hyperproliferative disorder that is usually treated by chemotherapeutic agents that are toxic not only to tumor cells but also to normal cells, so these agents produce major side effects. In addition, these agents are highly expensive and thus not affordable for most. Moreover, such agents cannot be used for cancer prevention. Traditional medicines are generally free of the deleterious side effects and usually inexpensive. Curcumin, a component of turmeric (Curcuma longa), is one such agent that is safe, affordable, and efficacious. How curcumin kills tumor cells is the focus of this review. We show that curcumin modulates growth of tumor cells through regulation of multiple cell signaling pathways including cell proliferation pathway (cyclin D1, c-myc), cell survival pathway (Bcl-2, Bcl-xL, cFLIP, XIAP, c-IAP1), caspase activation pathway (caspase-8, 3, 9), tumor suppressor pathway (p53, p21) death receptor pathway (DR4, DR5), mitochondrial pathways, and protein kinase pathway (JNK, Akt, and AMPK). How curcumin selectively kills tumor cells, and not normal cells, is also described in detail.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          Disruption of epithelial cell-matrix interactions induces apoptosis

          Cell-matrix interactions have major effects upon phenotypic features such as gene regulation, cytoskeletal structure, differentiation, and aspects of cell growth control. Programmed cell death (apoptosis) is crucial for maintaining appropriate cell number and tissue organization. It was therefore of interest to determine whether cell- matrix interactions affect apoptosis. The present report demonstrates that apoptosis was induced by disruption of the interactions between normal epithelial cells and extracellular matrix. We have termed this phenomenon "anoikis." Overexpression of bcl-2 protected cells against anoikis. Cellular sensitivity to anoikis was apparently regulated: (a) anoikis did not occur in normal fibroblasts; (b) it was abrogated in epithelial cells by transformation with v-Ha-ras, v-src, or treatment with phorbol ester; (c) sensitivity to anoikis was conferred upon HT1080 cells or v-Ha-ras-transformed MDCK cells by reverse- transformation with adenovirus E1a; (d) anoikis in MDCK cells was alleviated by the motility factor, scatter factor. The results suggest that the circumvention of anoikis accompanies the acquisition of anchorage independence or cell motility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The extracellular matrix as a cell survival factor.

            Programmed cell death (PCD) or apoptosis is a naturally occurring cell suicide pathway induced in a variety of cell types. In many cases, PCD is induced by the withdrawal of specific hormones or growth factors that function as survival factors. In this study, we have investigated the potential role of the extracellular matrix (ECM) as a cell survival factor. Our results indicate that in the absence of any ECM interactions, human endothelial cells rapidly undergo PCD, as determined by cell morphology, nuclei fragmentation, DNA degradation, protein cross-linking, and the expression of the PCD-specific gene TRPM-2. PCD was blocked by plating cells on an immobilized integrin beta 1 antibody but not by antibodies to either the class I histocompatibility antigen (HLA) or vascular cell adhesion molecule-1 (VCAM-1), suggesting that integrin-mediated signals were required for maintaining cell viability. Treatment of the cells in suspension with the tyrosine phosphatase inhibitor sodium orthovanadate also blocked PCD. When other cell types were examined, some, but not all, underwent rapid cell death when deprived of adhesion to the ECM. These results suggest that in addition to regulating cell growth and differentiation, the ECM also functions as a survival factor for many cell types.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma.

              Human mantle cell lymphoma (MCL), an aggressive B cell non-Hodgkin's lymphoma, is characterized by the overexpression of cyclin D1 which plays an essential role in the survival and proliferation of MCL. Because of MCL's resistance to current chemotherapy, novel approaches are needed. Since MCL cells are known to overexpress NF-kappaB regulated gene products (including cyclin D1), we used curcumin, a pharmacologically safe agent, to target NF-kappaB in a variety of MCL cell lines. All four MCL cell lines examined had overexpression of cyclin D1, constitutive active NF-kappaB and IkappaB kinase and phosphorylated forms of IkappaBalpha and p65. This correlated with expression of TNF, IkappaBalpha, Bcl-2, Bcl-xl, COX-2 and IL-6, all regulated by NF-kappaB. On treatment of cells with curcumin, however, downregulated constitutive active NF-kappaB and inhibited the consitutively active IkappaBalpha kinase (IKK), and phosphorylation of IkappaBalpha and p65. Curcumin also inhibited constitutive activation of Akt, needed for IKK activation. Consequently, the expression of all NF-kappaB-regulated gene products, were downregulated by the polyphenol leading to the suppression of proliferation, cell cycle arrest at the G1/S phase of the cell cycle and induction of apoptosis as indicated by caspase activation, PARP cleavage, and annexin V staining. That NF-kappaB activation is directly linked to the proliferation of cells, is also indicated by the observation that peptide derived from the IKK/NEMO-binding domain and p65 suppressed the constitutive active NF-kappaB complex and inhibited the proliferation of MCL cells. Constitutive NF-kappaB activation was found to be due to TNF, as anti-TNF antibodies inhibited both NF-kappaB activation and proliferation of cells. Overall, our results indicate that curcumin inhibits the constitutive NF-kappaB and IKK leading to suppression of expression of NF-kappaB-regulated gene products that results in the suppression of proliferation, cell cycle arrest, and induction of apoptosis in MCL.
                Bookmark

                Author and article information

                Journal
                19590964
                2758121
                10.1208/s12248-009-9128-x

                Chemistry
                Antineoplastic Agents,pharmacology,Cell Death,drug effects,Curcumin,Humans,Neoplasms,enzymology,metabolism,pathology

                Comments

                Comment on this article