7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Remarkable advances in biomedical research have led to the generation of large amounts of data. Using artificial intelligence, it has become possible to extract meaningful information from large volumes of data, in a shorter frame of time, with very less human interference. In effect, convolutional neural networks (a deep learning method) have been taught to recognize pathological lesions from images. Diabetes has high morbidity, with millions of people who need to be screened for diabetic retinopathy (DR). Deep neural networks offer a great advantage of screening for DR from retinal images, in improved identification of DR lesions and risk factors for diseases, with high accuracy and reliability. This review aims to compare the current evidences on various deep learning models for diagnosis of diabetic retinopathy (DR).

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Deep Learning in Neural Networks: An Overview

          (2014)
          In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices

            Artificial Intelligence (AI) has long promised to increase healthcare affordability, quality and accessibility but FDA, until recently, had never authorized an autonomous AI diagnostic system. This pivotal trial of an AI system to detect diabetic retinopathy (DR) in people with diabetes enrolled 900 subjects, with no history of DR at primary care clinics, by comparing to Wisconsin Fundus Photograph Reading Center (FPRC) widefield stereoscopic photography and macular Optical Coherence Tomography (OCT), by FPRC certified photographers, and FPRC grading of Early Treatment Diabetic Retinopathy Study Severity Scale (ETDRS) and Diabetic Macular Edema (DME). More than mild DR (mtmDR) was defined as ETDRS level 35 or higher, and/or DME, in at least one eye. AI system operators underwent a standardized training protocol before study start. Median age was 59 years (range, 22–84 years); among participants, 47.5% of participants were male; 16.1% were Hispanic, 83.3% not Hispanic; 28.6% African American and 63.4% were not; 198 (23.8%) had mtmDR. The AI system exceeded all pre-specified superiority endpoints at sensitivity of 87.2% (95% CI, 81.8–91.2%) (>85%), specificity of 90.7% (95% CI, 88.3–92.7%) (>82.5%), and imageability rate of 96.1% (95% CI, 94.6–97.3%), demonstrating AI’s ability to bring specialty-level diagnostics to primary care settings. Based on these results, FDA authorized the system for use by health care providers to detect more than mild DR and diabetic macular edema, making it, the first FDA authorized autonomous AI diagnostic system in any field of medicine, with the potential to help prevent vision loss in thousands of people with diabetes annually. ClinicalTrials.gov NCT02963441
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Automated Identification of Diabetic Retinopathy Using Deep Learning

              Diabetic retinopathy (DR) is one of the leading causes of preventable blindness globally. Performing retinal screening examinations on all diabetic patients is an unmet need, and there are many undiagnosed and untreated cases of DR. The objective of this study was to develop robust diagnostic technology to automate DR screening. Referral of eyes with DR to an ophthalmologist for further evaluation and treatment would aid in reducing the rate of vision loss, enabling timely and accurate diagnoses.
                Bookmark

                Author and article information

                Journal
                Eye
                Eye
                Springer Nature America, Inc
                0950-222X
                1476-5454
                November 6 2018
                Article
                10.1038/s41433-018-0269-y
                6328553
                30401899
                c4c7f03b-77e7-4b7d-a029-b07cf90b9bcc
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article