21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The role of the intestinal microbiota in type 1 diabetes mellitus

      ,
      Nature Reviews Endocrinology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Type 1 diabetes mellitus (T1DM) is a chronic immune-mediated disease with a subclinical prodromal period, characterized by selective loss of insulin-producing-β cells in the pancreatic islets of genetically susceptible individuals. The incidence of T1DM has increased several fold in most developed countries since World War II, in conjunction with other immune-mediated diseases. Rapid environmental changes and modern lifestyles are probably the driving factors that underlie this increase. These effects might be mediated by changes in the human microbiota, particularly the intestinal microbiota. Research on the gut microbiome of individuals at risk of developing T1DM and in patients with established disease is still in its infancy, but initial findings indicate that the intestinal microbiome of individuals with prediabetes or diabetes mellitus is different to that of healthy individuals. The gut microbiota in individuals with preclinical T1DM is characterized by Bacteroidetes dominating at the phylum level, a dearth of butyrate-producing bacteria, reduced bacterial and functional diversity and low community stability. However, these changes seem to emerge after the appearance of autoantibodies that are predictive of T1DM, which suggests that the intestinal microbiota might be involved in the progression from β-cell autoimmunity to clinical disease rather than in the initiation of the disease process.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Exposure to environmental microorganisms and childhood asthma.

          Children who grow up in environments that afford them a wide range of microbial exposures, such as traditional farms, are protected from childhood asthma and atopy. In previous studies, markers of microbial exposure have been inversely related to these conditions. In two cross-sectional studies, we compared children living on farms with those in a reference group with respect to the prevalence of asthma and atopy and to the diversity of microbial exposure. In one study--PARSIFAL (Prevention of Allergy-Risk Factors for Sensitization in Children Related to Farming and Anthroposophic Lifestyle)--samples of mattress dust were screened for bacterial DNA with the use of single-strand conformation polymorphism (SSCP) analyses to detect environmental bacteria that cannot be measured by means of culture techniques. In the other study--GABRIELA (Multidisciplinary Study to Identify the Genetic and Environmental Causes of Asthma in the European Community [GABRIEL] Advanced Study)--samples of settled dust from children's rooms were evaluated for bacterial and fungal taxa with the use of culture techniques. In both studies, children who lived on farms had lower prevalences of asthma and atopy and were exposed to a greater variety of environmental microorganisms than the children in the reference group. In turn, diversity of microbial exposure was inversely related to the risk of asthma (odds ratio for PARSIFAL, 0.62; 95% confidence interval [CI], 0.44 to 0.89; odds ratio for GABRIELA, 0.86; 95% CI, 0.75 to 0.99). In addition, the presence of certain more circumscribed exposures was also inversely related to the risk of asthma; this included exposure to species in the fungal taxon eurotium (adjusted odds ratio, 0.37; 95% CI, 0.18 to 0.76) and to a variety of bacterial species, including Listeria monocytogenes, bacillus species, corynebacterium species, and others (adjusted odds ratio, 0.57; 95% CI, 0.38 to 0.86). Children living on farms were exposed to a wider range of microbes than were children in the reference group, and this exposure explains a substantial fraction of the inverse relation between asthma and growing up on a farm. (Funded by the Deutsche Forschungsgemeinschaft and the European Commission.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Xenobiotics shape the physiology and gene expression of the active human gut microbiome.

            The human gut contains trillions of microorganisms that influence our health by metabolizing xenobiotics, including host-targeted drugs and antibiotics. Recent efforts have characterized the diversity of this host-associated community, but it remains unclear which microorganisms are active and what perturbations influence this activity. Here, we combine flow cytometry, 16S rRNA gene sequencing, and metatranscriptomics to demonstrate that the gut contains a distinctive set of active microorganisms, primarily Firmicutes. Short-term exposure to a panel of xenobiotics significantly affected the physiology, structure, and gene expression of this active gut microbiome. Xenobiotic-responsive genes were found across multiple bacterial phyla, encoding antibiotic resistance, drug metabolism, and stress response pathways. These results demonstrate the power of moving beyond surveys of microbial diversity to better understand metabolic activity, highlight the unintended consequences of xenobiotics, and suggest that attempts at personalized medicine should consider interindividual variations in the active human gut microbiome. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Relating the metatranscriptome and metagenome of the human gut.

              Although the composition of the human microbiome is now well-studied, the microbiota's >8 million genes and their regulation remain largely uncharacterized. This knowledge gap is in part because of the difficulty of acquiring large numbers of samples amenable to functional studies of the microbiota. We conducted what is, to our knowledge, one of the first human microbiome studies in a well-phenotyped prospective cohort incorporating taxonomic, metagenomic, and metatranscriptomic profiling at multiple body sites using self-collected samples. Stool and saliva were provided by eight healthy subjects, with the former preserved by three different methods (freezing, ethanol, and RNAlater) to validate self-collection. Within-subject microbial species, gene, and transcript abundances were highly concordant across sampling methods, with only a small fraction of transcripts (<5%) displaying between-method variation. Next, we investigated relationships between the oral and gut microbial communities, identifying a subset of abundant oral microbes that routinely survive transit to the gut, but with minimal transcriptional activity there. Finally, systematic comparison of the gut metagenome and metatranscriptome revealed that a substantial fraction (41%) of microbial transcripts were not differentially regulated relative to their genomic abundances. Of the remainder, consistently underexpressed pathways included sporulation and amino acid biosynthesis, whereas up-regulated pathways included ribosome biogenesis and methanogenesis. Across subjects, metatranscriptional profiles were significantly more individualized than DNA-level functional profiles, but less variable than microbial composition, indicative of subject-specific whole-community regulation. The results thus detail relationships between community genomic potential and gene expression in the gut, and establish the feasibility of metatranscriptomic investigations in subject-collected and shipped samples.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Endocrinology
                Nat Rev Endocrinol
                Springer Science and Business Media LLC
                1759-5029
                1759-5037
                March 2016
                January 4 2016
                March 2016
                : 12
                : 3
                : 154-167
                Article
                10.1038/nrendo.2015.218
                26729037
                c4d0ac63-3830-4909-8734-67fee81da6d8
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                scite_

                Similar content1,623

                Cited by169

                Most referenced authors3,186