17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Noninvasive Phenotyping of Plant–Pathogen Interaction: Consecutive In Situ Imaging of Fluorescing Pseudomonas syringae, Plant Phenolic Fluorescence, and Chlorophyll Fluorescence in Arabidopsis Leaves

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant–pathogen interactions have been widely studied, but mostly from the site of the plant secondary defense. Less is known about the effects of pathogen infection on plant primary metabolism. The possibility to transform a fluorescing protein into prokaryotes is a promising phenotyping tool to follow a bacterial infection in plants in a noninvasive manner. In the present study, virulent and avirulent Pseudomonas syringae strains were transformed with green fluorescent protein (GFP) to follow the spread of bacteria in vivo by imaging Pulse-Amplitude-Modulation (PAM) fluorescence and conventional binocular microscopy. The combination of various wavelengths and filters allowed simultaneous detection of GFP-transformed bacteria, PAM chlorophyll fluorescence, and phenolic fluorescence from pathogen-infected plant leaves. The results show that fluorescence imaging allows spatiotemporal monitoring of pathogen spread as well as phenolic and chlorophyll fluorescence in situ, thus providing a novel means to study complex plant–pathogen interactions and relate the responses of primary and secondary metabolism to pathogen spread and multiplication. The study establishes a deeper understanding of imaging data and their implementation into disease screening.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications.

          Chlorophyll fluorescence is a non-invasive measurement of photosystem II (PSII) activity and is a commonly used technique in plant physiology. The sensitivity of PSII activity to abiotic and biotic factors has made this a key technique not only for understanding the photosynthetic mechanisms but also as a broader indicator of how plants respond to environmental change. This, along with low cost and ease of collecting data, has resulted in the appearance of a large array of instrument types for measurement and calculated parameters which can be bewildering for the new user. Moreover, its accessibility can lead to misuse and misinterpretation when the underlying photosynthetic processes are not fully appreciated. This review is timely because it sits at a point of renewed interest in chlorophyll fluorescence where fast measurements of photosynthetic performance are now required for crop improvement purposes. Here we help the researcher make choices in terms of protocols using the equipment and expertise available, especially for field measurements. We start with a basic overview of the principles of fluorescence analysis and provide advice on best practice for taking pulse amplitude-modulated measurements. We also discuss a number of emerging techniques for contemporary crop and ecology research, where we see continual development and application of analytical techniques to meet the new challenges that have arisen in recent years. We end the review by briefly discussing the emerging area of monitoring fluorescence, chlorophyll fluorescence imaging, field phenotyping, and remote sensing of crops for yield and biomass enhancement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An explainable deep machine vision framework for plant stress phenotyping

            Significance Plant stress identification based on visual symptoms has predominately remained a manual exercise performed by trained pathologists, primarily due to the occurrence of confounding symptoms. However, the manual rating process is tedious, is time-consuming, and suffers from inter- and intrarater variabilities. Our work resolves such issues via the concept of explainable deep machine learning to automate the process of plant stress identification, classification, and quantification. We construct a very accurate model that can not only deliver trained pathologist-level performance but can also explain which visual symptoms are used to make predictions. We demonstrate that our method is applicable to a large variety of biotic and abiotic stresses and is transferable to other imaging conditions and plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of secondary metabolites in plant defense against pathogens

              Pathogens get entry into host cell, reproduce there and use biological machinery of host plants which is threat to global crop production. Integrated management strategies based upon minimizing population and use of resistant cultivars can address this potential problem. In developing world farmers are less likely to adopt these approaches instead they prefer the use of chemical pesticides. Reckless use of chemical pesticides is destroying our ecosystem. That's why it is required to explore ecofriendly alternatives, like plant based metabolites to control pathogens. Studies conducted on different plant-metabolites reported that these metabolite can potentially combat plant pathogens. In this study we have also discussed some of plant secondary metabolites including alkaloids, flavonoids and phenolics. In this review we tried to highlight the new trends in utilizing secondary metabolites for controlling bacterial, viral and fungal pathogens with the hope that upcoming drugs will be human and ecosystem friendly.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                15 October 2019
                2019
                : 10
                : 1239
                Affiliations
                [1] 1Department of Pharmaceutical Biology, University of Würzburg , Würzburg, Germany
                [2] 2Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum Muenchen , Neuherberg, Germany
                [3] 3Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen , Copenhagen, Denmark
                [4] 4Department of Adaptive Biotechnologies, Global Change Research Institute, CAS , Brno, Czechia
                Author notes

                Edited by: Roland Pieruschka, Julich Research Centre, Germany

                Reviewed by: Marek Zivcak, Slovak University of Agriculture, Slovakia; Tomasz Hura, The Franciszek Górski Institute of Plant Physiology (PAS), Poland

                *Correspondence: Chandana Pandey, cp@ 123456plen.ku.dk

                This article was submitted to Technical Advances in Plant Science, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2019.01239
                6803544
                31681362
                c4d27659-40b6-4718-9f52-46a6f2bd771e
                Copyright © 2019 Hupp, Rosenkranz, Bonfig, Pandey and Roitsch

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 June 2019
                : 05 September 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 56, Pages: 10, Words: 5503
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                green fluorescence protein (gfp),plant–pathogen interaction,imaging pam,chlorophyll fluorescence imaging,phenolic compounds

                Comments

                Comment on this article