10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We show that carbonaceous chondrite meteorites actively and selectively catalyze the formation of relevant prebiotic molecules from formamide in aqueous media. Specific catalytic behaviours are observed, depending on the origin and composition of the chondrites and on the type of water present in the system (activity: thermal > seawater > pure). We report the one-pot synthesis of all the natural nucleobases, of aminoacids and of eight carboxylic acids (forming, from pyruvic acid to citric acid, a continuous series encompassing a large part of the extant Krebs cycle). These data shape a general prebiotic scenario consisting of carbonaceous meteorites acting as catalysts and of a volcanic-like environment providing heat, thermal waters and formamide. This scenario also applies to the other solar system locations that experienced rich delivery of carbonaceous materials, and whose physical-chemical conditions could have allowed chemical evolution.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence for life on Earth before 3,800 million years ago.

          It is unknown when life first appeared on Earth. The earliest known microfossils (approximately 3,500 Myr before present) are structurally complex, and if it is assumed that the associated organisms required a long time to develop this degree of complexity, then the existence of life much earlier than this can be argued. But the known examples of crustal rocks older than 3,500 Myr have experienced intense metamorphism, which would have obliterated any fragile microfossils contained therein. It is therefore necessary to search for geochemical evidence of past biotic activity that has been preserved within minerals that are resistant to metamorphism. Here we report ion-microprobe measurements of the carbon-isotope composition of carbonaceous inclusions within grains of apatite (basic calcium phosphate) from the oldest known sediment sequences--a approximately 3,800-Myr-old banded iron formation from the Isua supracrustal belt, West Greenland, and a similar formation from the nearby Akilia island that is possibly older than 3,850 Myr. The carbon in the carbonaceous inclusions is isotopically light, indicative of biological activity; no known abiotic process can explain the data. Unless some unknown abiotic process exists which is able both to create such isotopically light carbon and then selectively incorporate it into apatite grains, our results provide evidence for the emergence of life on Earth by at least 3,800 Myr before present.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases.

            All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Universality in intermediary metabolism.

              We analyze the stoichiometry, energetics, and reaction concentration dependence of the reductive tricarboxylic acid (rTCA) cycle as a universal and possibly primordial metabolic core. The rTCA reaction sequence is a network-autocatalytic cycle along the relaxation pathway for redox couples in nonequilibrium reducing environments, which provides starting organic compounds for the synthesis of all major classes of biomolecules. The concentration dependence of its reactions suggests it as a precellular bulk process. We propose that rTCA is statistically favored among competing redox relaxation pathways under early-earth conditions and that this feature drove its emergence and also accounts for its evolutionary robustness and universality. The ability to enhance the rate of core reactions creates an energetic basis for selection of subsequent layers of biological complexity.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                13 December 2016
                2016
                : 6
                : 38888
                Affiliations
                [1 ]Biological and Ecological Department (DEB), University of Tuscia , 01100 Viterbo, Italy
                [2 ]Institute of Space Sciences (CSIC-IEEC), Meteorites, Minor Bodies and Planetary Sciences Group, Campus UAB Bellaterra , Carrer de Can Magrans, s/n 08193 Cerdanyola del Vallés, Barcelona, Spain
                Author notes
                Article
                srep38888
                10.1038/srep38888
                5153646
                27958316
                c4d89bd0-d3b7-44f4-967f-0957c909e78b
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 20 July 2016
                : 14 November 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article