0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An inexact-penalty method for GNE seeking in games with dynamic agents

      Preprint

      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We consider a network of autonomous agents whose outputs are actions in a game with coupled constraints. In such network scenarios, agents seeking to minimize coupled cost functions using distributed information while satisfying the coupled constraints. Current methods consider the small class of multi-integrator agents using primal-dual methods. These methods can only ensure constraint satisfaction in steady-state. In contrast, we propose an inexact penalty method using a barrier function for nonlinear agents with equilibrium-independent passive dynamics. We show that these dynamics converge to an epsilon-GNE while satisfying the constraints for all time, not only in steady-state. We develop these dynamics in both the full-information and partial-information settings. In the partial-information setting, dynamic estimates of the others' actions are used to make decisions and are updated through local communication. Applications to optical networks and velocity synchronization of flexible robots are provided.

          Related collections

          Author and article information

          Journal
          23 April 2021
          Article
          2104.11609

          http://creativecommons.org/licenses/by/4.0/

          Custom metadata
          10 pages, 5 figures
          eess.SY cs.SY

          Performance, Systems & Control

          Comments

          Comment on this article