15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High affinity glutamate transporters: regulation of expression and activity.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          L-Glutamic acid is a major excitatory neurotransmitter in the mammalian central nervous system. The termination of the glutamatergic transmission and the clearance of the excessive, neurotoxic concentrations of glutamate is ensured by a high affinity glutamate uptake system. Four homologous types of Na/K-dependent high affinity glutamate transporters, glutamate/aspartate transporter, glutamate transporter 1, excitatory amino acid carrier 1, and excitatory amino acid transporter 4, have recently been cloned and were assigned to a separate gene family, together with two neutral amino acid carriers, alanine/serine/cysteine transporter 1/serine/alanine/threonine transporter and adipocyte amino acid transporter. The genomic organization of these transporters is still under investigation. Very little is known about the nature of the factors and molecular mechanisms that regulate developmental, regional, and cell type-specific expression of the glutamate transporters and their aberrant functioning in neurodegenerative diseases (e.g., amyotrophic lateral sclerosis and Alzheimer's disease). Some experimental conditions (e.g., ischemia, corticostriatal lesions, hyperosmolarity, culturing conditions) and several naturally occurring and synthetic compounds (e.g., glutamate receptor agonists, dopamine, alpha1- and beta-adrenergic agonists, cAMP, phorbol esters, arachidonic acid, nitric oxide, oxygen free radicals, amyloid beta-peptide, tumor necrosis factor-alpha, glucocorticosteroids, unidentified neuronal factors) affect the molecular expression and activity of glutamate transporters. Further elucidation of the molecular events that link epigenetic signals with transcriptional and post-transcriptional mechanisms (e.g., alternative splicing, translation and post-translational modifications) is crucial for the development of selective pharmacological tools and strategies interfering with the expression of the individual glutamate transporters.

          Related collections

          Author and article information

          Journal
          Mol Pharmacol
          Molecular pharmacology
          American Society for Pharmacology & Experimental Therapeutics (ASPET)
          0026-895X
          0026-895X
          Jul 1997
          : 52
          : 1
          Affiliations
          [1 ] PharmaBiotec Research Center, Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen.
          Article
          10.1124/mol.52.1.6
          9224806
          c4e183ec-f42d-4eb4-b136-85bfdc98157e
          History

          Comments

          Comment on this article